Lumbar Spine Fractures and Dislocations

by | Mar 1, 2019 | Uncategorized | 0 comments

All Premium Themes And WEBSITE Utilities Tools You Ever Need! Greatest 100% Free Bonuses With Any Purchase.

Greatest CYBER MONDAY SALES with Bonuses are offered to following date: Get Started For Free!
Purchase Any Product Today! Premium Bonuses More Than $10,997 Will Be Emailed To You To Keep Even Just For Trying It Out.
Click Here To See Greatest Bonuses

and Try Out Any Today!

Here’s the deal.. if you buy any product(s) Linked from this sitewww.Knowledge-Easy.com including Clickbank products, as long as not Google’s product ads, I am gonna Send ALL to you absolutely FREE!. That’s right, you WILL OWN ALL THE PRODUCTS, for Now, just follow these instructions:

1. Order the product(s) you want by click here and select the Top Product, Top Skill you like on this site ..

2. Automatically send you bonuses or simply send me your receipt to consultingadvantages@yahoo.com Or just Enter name and your email in the form at the Bonus Details.

3. I will validate your purchases. AND Send Themes, ALL 50 Greatests Plus The Ultimate Marketing Weapon & “WEBMASTER’S SURVIVAL KIT” to you include ALL Others are YOURS to keep even you return your purchase. No Questions Asked! High Classic Guaranteed for you! Download All Items At One Place.

That’s it !

*Also Unconditionally, NO RISK WHAT SO EVER with Any Product you buy this website,

60 Days Money Back Guarantee,

IF NOT HAPPY FOR ANY REASON, FUL REFUND, No Questions Asked!

Download Instantly in Hands Top Rated today!

Remember, you really have nothing to lose if the item you purchased is not right for you! Keep All The Bonuses.

Super Premium Bonuses Are Limited Time Only!

Day(s)

:

Hour(s)

:

Minute(s)

:

Second(s)

Get Paid To Use Facebook, Twitter and YouTube
Online Social Media Jobs Pay $25 - $50/Hour.
No Experience Required. Work At Home, $316/day!
View 1000s of companies hiring writers now!

Order Now!

MOST POPULAR

*****
Customer Support Chat Job: $25/hr
Chat On Twitter Job - $25/hr
Get Paid to chat with customers on
a business’s Twitter account.

Try Free Now!

Get Paid To Review Apps On Phone
Want to get paid $810 per week online?
Get Paid To Review Perfect Apps Weekly.

Order Now
!
Look For REAL Online Job?
Get Paid To Write Articles $200/day
View 1000s of companies hiring writers now!

Try-Out Free Now!

How To Develop Your Skill For Great Success And Happiness Including Become CPA? | Additional special tips From Admin

Competence Improvement will be the number 1 necessary and main factor of attaining genuine accomplishment in most jobs as most people noticed in our own culture as well as in All over the world. Consequently privileged to talk about together with everyone in the soon after in regard to what successful Skill level Development is; the way or what options we operate to reach objectives and in the end one might work with what someone really likes to conduct any day for a maximum living. Is it so superb if you are equipped to develop resourcefully and acquire achievements in what exactly you believed, designed for, regimented and labored really hard each day and undoubtedly you turned into a CPA, Attorney, an manager of a substantial manufacturer or even a doctor who can easily extremely make contributions superb guide and values to many others, who many, any modern society and city obviously esteemed and respected. I can's believe that I can guidance others to be top specialized level exactly who will bring about significant solutions and alleviation values to society and communities now. How joyful are you if you turn out to be one just like so with your own personal name on the title? I have arrived at SUCCESS and beat all the tough portions which is passing the CPA exams to be CPA. Besides, we will also go over what are the pitfalls, or various other problems that will be on ones own option and the simplest way I have professionally experienced all of them and could demonstrate you ways to address them. | From Admin and Read More at Cont'.

Lumbar Spine Fractures and Dislocations

No Results

No Results

processing….

Each year, more than 150,000 persons in North America sustain fractures of the vertebral column. Injuries to the thoracolumbar and lumbar spine constitute most of these fractures. The immediate neurologic damage that accompanies the bony destruction results in nearly 5000 cases of paraplegia per year. The mechanisms and severity of injuries reflect a mechanized and risk-taking culture.

Since Mixter and Barr first described an operative procedure for the management of lumbar disk disease, the goals of spinal surgery have been decompression of the neural elements and preservation of normal anatomy and biomechanics. Numerous investigators have attempted to define stability and to recommend treatment based on the presumed injury mechanism.

In the 1930s, Watson Jones considered spinal fractures to be pure flexion fractures and treated them with hyperextension casts. In 1949, Nicoll reported on 166 thoracolumbar fractures in coal miners and classified these injuries as anterior wedge fractures, lateral wedge fractures, fracture dislocations, and neural arch fractures. In 1949, Nicoll attempted to define stable versus unstable fractures using an anatomic classification. In his view, the major determinant of stability was the integrity of the interspinous ligament.

Later, Holdsworth introduced the first modern classification, which was based on the two-column theory of spinal column stability. This classification had a major impact on the understanding of thoracolumbar injuries.

In the 1980s, Denis proposed the three-column theory of spinal instability, which remains widely accepted because of its simplicity and the anatomic description. This proposal was based on the meticulous analysis of 412 thoracolumbar spinal injuries.

In Great Britain, Ludwig Guttman pioneered current concepts of spinal cord rehabilitation in the 1940s. Before this time, the mortality for patients with spinal cord injury was 80-90% within the first year. Most patients developed pressure sores or urinary sepsis that led to death. Guttman obtained reduction of spine fractures using traction and postural reduction, revolutionized nursing techniques, and introduced a comprehensive program of rehabilitation. The dramatic reductions in mortality and morbidity obtained with these methods countered the perception that these cases were hopeless and caused surgical stabilization of the traumatized spine to be considered logical and practical.

Initial attempts at spinal instrumentation used wire and screw fixation for spinal fractures and were first reported in the late 1800s. However, these materials were not suitable for internal fixation. Metals were subject to electrolysis when placed in tissue. In 1930, Vitallium, an alloy of chromium, molybdenum, tungsten, and cobalt, was introduced for internal fixation.

However, significant advances in spinal instrumentation did not occur until after World War II, when Rogers described the interspinous wiring technique. Also in the 1940s, Harrington introduced the distraction rod fixation system, which, although introduced for the treatment of scoliosis, was found to be useful to reduce and stabilize spine fractures. In 1945, Cloward introduced the technique of posterior lumbar interbody fusion. In the 1970s in Mexico, Luque introduced the sublaminar wiring technique, which was combined with the use of rods.

The 1980s produced a proliferation of spinal instrumentation systems. Roy-Camille in France developed modern pedicle screws. Cotrel and Dubousset in France developed a system consisting of rods, multiple hooks, and screws. This system rapidly replaced the Harrington distraction rod and the Luque rod constructs in the treatment of thoracic spine injuries. Since then, multiple systems have become available for instrumental fixation of the spine based on the system introduced by Cotrel and Dubousset.

This article reviews the diagnosis and management of acute lumbar vertebral fractures. (For more information, see Lumbar Compression Fracture and Lumbar Spine Trauma Imaging.)

The lumbar spine consists of a mobile segment of five vertebrae, which are located between the relatively immobile segments of the thoracic and sacral segments. The thoracic spine is stabilized by the attached rib cage and intercostal musculature, whereas the sacral segments are fused, providing a stable articulation with the ilium.

The lumbar vertebrae are particularly large and heavy as compared with the cervical and thoracic vertebrae. The bodies are wider and have shorter and heavier pedicles, and the transverse processes project somewhat more laterally and ventrally than other spinal segments. The laminae are shorter vertically than are the bodies and are bridged by strong ligaments. The spinous processes are broader and stronger than are those in the thoracic and cervical spine.

The intervertebral disks consist of two components, the annulus fibrosus and the nucleus pulposus. The annulus is a dense fibrous ring located at the periphery of the disk that has strong attachments to the vertebrae and serves to confine the nucleus pulposus.

Because the lumbar spine must transmit all of the compressive, bending, and rotational forces generated between the upper and lower body, it is surrounded by powerful musculature and ligaments.

The lumbar spine is a complex three-dimensional structure that is capable of flexion, extension, lateral bending, and rotation. The total range of motion is the result of a summation of the limited movements that occur between the individual vertebrae. Strong muscles and ligaments are crucial in supporting the bony structures and in the initiation and control of movements.

During flexion, the intervertebral disk is compressed anteriorly, and the spinal canal is widened. Some sliding movement of the articular process occurs in the zygapophyseal joint. This movement is limited by the posterior ligamentous complex and the dorsal muscles.

Extension of the lumbar spine is more limited, producing posterior compression of the disk and narrowing of the spinal canal, along with sliding motion of the zygapophyseal joint. The anterior longitudinal ligament, ventral muscles, lamina, and spinous processes limit the extension of the lumbar spine.

Lateral bending involves lateral compression of the intervertebral disk on the concave side and sliding separation of the zygapophyseal joint on the convex side. An overriding of the zygapophyseal joint occurs in the concave side. The intertransverse ligaments limit the lateral bending of the spine.

Rotation of the lumbar spine involves compression of the annulus fibrosus fibers. It is limited by the geometry of the facet joints and the iliolumbar ligaments.

The motion of the lumbar spine cannot be considered without considering the synchronous movements of the cervical and thoracic spine. The entire spinal column moves as a whole in all planes of motion. Each region of the spine has its own characteristic curvature. These curves allow an upright posture while maintaining the center of gravity over the pelvis and lower limbs. Most rotation is accomplished by the cervical spine; flexion and lateral bending are primarily cervical and lumbar functions.

The intervertebral disks are thick and strong. The annulus fibrosus receives most forces transmitted from one vertebral body to another, and it is designed to resist tension and shearing forces. The nucleus pulposus is best designed to resist compression forces. It receives primarily vertical forces from the vertebral bodies and redistributes them in a radial fashion to the horizontal plane. This structure allows the intervertebral disks to dissipate the axial loading.

The forces responsible for spinal fractures are as follows:

The most common acute fractures are compression fractures or vertebral endplate fractures caused by sudden axial loading, transverse process avulsion by the origin of the psoas muscle, spinous process avulsions, and acute fracture of the pars interarticularis from hyperextension.

Vertebral body compression is more common in patients with decreased bone density. [1, 2] In adolescents, it is relatively common to find endplate fractures or apophyseal avulsion fractures. All of these injuries generally are stable and heal with immobilization and nonsurgical management. [3, 4]

Spinous process fractures may occur as a result of direct trauma to the posterior spine or as a result of forcible flexion and rotation. These injuries usually are not associated with neurologic deficits. Violent muscular contraction or direct trauma can cause fractures of the transverse processes. For example, a football helmet blow to the back can cause fractures of either the spinous or transverse process. Despite their relatively innocuous appearance, these fractures can cause significant bleeding into the retroperitoneal space, resulting in acute anemia or ileus.

Acute traumatic spondylolisthesis usually is associated with major trauma and usually is caused by extreme hyperextension. Although patients with a new fracture of the pars interarticularis may have a slip present at the time of the injury, a slip can occur months to years later as the disk degenerates under shear loads that it cannot sustain. [5]

The National Spinal Cord Injury Registry, established by Ducker and Perot, reported that 40% of spinal injuries were caused by motor vehicle accidents, [6, 7] 20% by falls, and 40% by gunshot wounds, [8] sporting accidents, [9] industrial accidents, and agricultural accidents combined. Such injuries can also be the result of child abuse. [10]

The spectrum of injury severity related to motor vehicle accidents ranges from minor soft tissue contusions to paraplegia and death. Numerous variables relating to the type and severity of the crash, the type of vehicle, and the use of safety restraints have an impact on the frequency and severity of the spinal injury.

An analysis of patients admitted to Rancho Los Amigos Spinal Cord Injury Center from 1966 to 1972 showed that gunshot wounds were second only to motor vehicle accidents as a cause of traumatic paraplegia. In a series of patients with spinal injuries in south Florida, gunshot wounds caused 34% of the injuries, and motor vehicle accidents caused only 28%; the remaining injuries were attributable to falls (19%), sports- and water-related injuries (8%), and other causes including industrial accidents (12%). For a study of 49 cases in South Africa, see Le Roux and Dunn. [8]

After autopsies on more than 5000 service members killed in Iraq and Afghanistan, Schoenfeld et al found than 38.5 had sustained at least one spinal injury. This is a higher percentage than was previously thought. [11]

Spinous process fractures may occur as a result of direct trauma to the posterior spine, and violent muscular contraction or direct trauma can cause fractures of the transverse processes. [12] Direct trauma also can cause a fracture of an articular process.

Accidents are the fourth leading cause of death in the United States, after heart disease, cancer, and stroke. Annually, accidents account for about 50 deaths per 100,000 population. Of these deaths, approximately 3% are the direct result of spinal fractures with spinal cord injury from trauma. More than 150,000 persons in North America sustain fractures of the vertebral column each year, and 11,000 of these patients sustain spinal cord injuries. [13]

The thoracolumbar spine and lumbar spine are the most common sites for fractures because of the high mobility of the lumbar spine compared to the more rigid thoracic spine. [14] Injury to the cord or cauda equina occurs in approximately 10-38% of adult thoracolumbar fractures and in as many as 50-60% of fracture dislocations. The rate of bony injury without neurologic consequence is undoubtedly higher. However, statistics are unreliable because of the lack of accurate reporting. [15]

A high percentage of lumbosacral fractures occur in individuals younger than 30 years. Nearly 60% of patients have serious disabling deficits. Each year, approximately 12,000 persons sustain spinal cord injuries secondary to spinal fractures, 4200 of them die before reaching the hospital, nearly 5000 patients develop paraplegia, and an additional 1500 die during the initial hospitalization.

In a study performed among navy aviators, the overall incidence of thoracolumbar fracture was 12.8 cases per 100,000 aviators per year. Helicopter crashes and parachuting accidents accounted for 73% of fractures, and neurologic injury occurred in 10% of aviators.

The international rate of spinal fractures is difficult to determine because of differences in data collection and reporting among countries. In developed countries, traffic accidents seem to be the most common causes of spinal fractures and spinal cord injuries, whereas in less developed countries, the most common causes seem to be falls.

Osteoporosis is a known risk factor for the development of spinal compression fractures. [16, 17] In an analysis of patients with osteoporosis in Oviedo, Spain, the prevalence of vertebral fractures ranged from 17.4% to 24.6%. Fractures were more common in women than in men, and a relatively high frequency of vertebral fractures was seen in men aged 50-65 years. [1, 2, 18]  The trabecular bone score (TBS) may prove useful as a complementary tool for assessing fracture risk in the setting of osteoporosis. [19, 20]

In a study of 402 women living in Beijing, China, the prevalence of vertebral fractures was 5% in a group aged 50-59 years and 37% among women aged 80 years or older. [21] See also the Fracture Index WITH Known Bone Mineral Density (BMD) calculator.

The outcome and prognosis of patients with lumbosacral fractures depends on their neurologic condition. Patients with no neurologic deficits or partial deficits generally have a good prognosis, whereas those with complete injuries remain paraplegic. Other factors (eg, age, comorbid conditions, associated injuries, and general medical complications) also have an impact on outcome.

Although little consensus exists regarding the optimal timing of spine fracture fixation following blunt trauma, potential advantages of early fixation (within 72 hours of injury) include earlier patient mobilization and, probably, fewer septic complications related to pneumonia.

Patients who survive their original spinal cord injury have high residual morbidity. Studies of long-term survival among patients who sustain spinal cord injuries revealed that about 80%  patients with spinal injuries live 10 or more years after injury, compared with a normal 10-year life expectancy of 97%. Survival rates are much lower for patients with complete lesions than for patients with incomplete cord injuries. For a study of the direct medical costs of spine fractures, see van der Roer et al. [22]

Fontaine MA, Albert A, Dubois B, Saint-Remy A, Rorive G. Fracture and bone mineral density in hemodialysis patients. Clin Nephrol. 2000 Sep. 54 (3):218-26. [Medline].

Ichikawa S, Johnson ML, Koller DL, Lai D, Xuei X, Edenberg HJ, et al. Polymorphisms in the bone morphogenetic protein 2 (BMP2) gene do not affect bone mineral density in white men or women. Osteoporos Int. 2006. 17 (4):587-92. [Medline].

Alanay A. Re: post-traumatic findings of the spine after earlier vertebral fracture in young patients. Spine (Phila Pa 1976). 2000 Nov 1. 25 (21):2847-8. [Medline].

Dogan S, Safavi-Abbasi S, Theodore N, Chang SW, Horn EM, Mariwalla NR, et al. Thoracolumbar and sacral spinal injuries in children and adolescents: a review of 89 cases. J Neurosurg. 2007 Jun. 106(6 Suppl):426-33. [Medline].

El Assuity WI, El Masry MA, Chan D. Acute traumatic spondylolisthesis at the lumbosacral junction. J Trauma. 2007 Jun. 62(6):1514-6; discussion 1516-7. [Medline].

Smith JA, Siegel JH, Siddiqi SQ. Spine and spinal cord injury in motor vehicle crashes: a function of change in velocity and energy dissipation on impact with respect to the direction of crash. J Trauma. 2005 Jul. 59(1):117-31. [Medline].

Beaunoyer M, St-Vil D, Lallier M, Blanchard H. Abdominal injuries associated with thoraco-lumbar fractures after motor vehicle collision. J Pediatr Surg. 2001 May. 36(5):760-2. [Medline].

le Roux JC, Dunn RN. Gunshot injuries of the spine–a review of 49 cases managed at the Groote Schuur Acute Spinal Cord Injury Unit. S Afr J Surg. 2005 Nov. 43(4):165-8. [Medline].

Franz T, Hasler RM, Benneker L, Zimmermann H, Siebenrock KA, Exadaktylos AK. Severe spinal injuries in alpine skiing and snowboarding: a 6-year review of a tertiary trauma centre for the Bernese Alps ski resorts, Switzerland. Br J Sports Med. 2008 Jan. 42(1):55-8. [Medline].

Sieradzki JP, Sarwark JF. Thoracolumbar fracture-dislocation in child abuse: case report, closed reduction technique and review of the literature. Pediatr Neurosurg. 2008. 44 (3):253-7. [Medline].

Schoenfeld AJ, Newcomb RL, Pallis MP, Cleveland AW 3rd, Serrano JA, Bader JO, et al. Characterization of spinal injuries sustained by American service members killed in Iraq and Afghanistan: a study of 2,089 instances of spine trauma. J Trauma Acute Care Surg. 2013 Apr. 74(4):1112-8. [Medline].

Patten RM, Gunberg SR, Brandenburger DK. Frequency and importance of transverse process fractures in the lumbar vertebrae at helical abdominal CT in patients with trauma. Radiology. 2000 Jun. 215(3):831-4. [Medline].

Hsieh CT, Chen GJ, Wu CC, Su YH. Complete fracture-dislocation of the thoracolumbar spine without paraplegia. Am J Emerg Med. 2008 Jun. 26(5):633.e5-7. [Medline].

Wood KB, Li W, Lebl DR, Ploumis A. Management of thoracolumbar spine fractures. Spine J. 2014 Jan. 14 (1):145-64. [Medline].

Levi AD, Hurlbert RJ, Anderson P, Fehlings M, Rampersaud R, Massicotte EM, et al. Neurologic deterioration secondary to unrecognized spinal instability following trauma–a multicenter study. Spine (Phila Pa 1976). 2006 Feb 15. 31 (4):451-8. [Medline].

Kinoshita T, Ebara S, Kamimura M, Tateiwa Y, Itoh H, Yuzawa Y, et al. Nontraumatic lumbar vertebral compression fracture as a risk factor for femoral neck fractures in involutional osteoporotic patients. J Bone Miner Metab. 1999. 17 (3):201-5. [Medline].

Castaño-Betancourt MC, Oei L, Rivadeneira F, de Schepper EI, Hofman A, Bierma-Zeinstra S, et al. Association of lumbar disc degeneration with osteoporotic fractures; the Rotterdam study and meta-analysis from systematic review. Bone. 2013 Nov. 57 (1):284-9. [Medline].

Kudlacek S, Schneider B, Resch H, Freudenthaler O, Willvonseder R. Gender differences in fracture risk and bone mineral density. Maturitas. 2000 Oct 31. 36 (3):173-80. [Medline].

Harvey NC, Glüer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015 Sep. 78:216-24. [Medline].

Lee JE, Kim KM, Kim LK, Kim KY, Oh TJ, Moon JH, et al. Comparisons of TBS and lumbar spine BMD in the associations with vertebral fractures according to the T-scores: A cross-sectional observation. Bone. 2017 Dec. 105:269-275. [Medline].

Wu CT, Lee SC, Lee ST, Chen JF. Classification of symptomatic osteoporotic compression fractures of the thoracic and lumbar spine. J Clin Neurosci. 2006 Jan. 13(1):31-8. [Medline].

van der Roer N, de Bruyne MC, Bakker FC, van Tulder MW, Boers M. Direct medical costs of traumatic thoracolumbar spine fractures. Acta Orthop. 2005 Oct. 76 (5):662-6. [Medline].

Heyde CE, Ertel W, Kayser R. [Management of spine injuries in polytraumatized patients]. Orthopade. 2005 Sep. 34(9):889-905. [Medline].

Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013 Nov 1. 38 (23):2028-37. [Medline].

Nelson DW, Martin MJ, Martin ND, Beekley A. Evaluation of the risk of noncontiguous fractures of the spine in blunt trauma. J Trauma Acute Care Surg. 2013 Jul. 75(1):135-9. [Medline].

Dosch JC, Moser T, Dupuis MG, Dietemann JL. [How to read radiography of the traumatic spine?]. J Radiol. 2007 May. 88(5 Pt 2):802-16. [Medline].

Groves CJ, Cassar-Pullicino VN, Tins BJ, Tyrrell PN, McCall IW. Chance-type flexion-distraction injuries in the thoracolumbar spine: MR imaging characteristics. Radiology. 2005 Aug. 236 (2):601-8. [Medline].

Karaikovic EE, Pacheco HO. Treatment options for thoracolumbar spine fractures. Bosn J Basic Med Sci. 2005 May. 5(2):20-6. [Medline].

Inaba K, Kirkpatrick AW, Finkelstein J, Murphy J, Brenneman FD, Boulanger BR, et al. Blunt abdominal aortic trauma in association with thoracolumbar spine fractures. Injury. 2001 Apr. 32 (3):201-7. [Medline].

Tyroch AH, McGuire EL, McLean SF, Kozar RA, Gates KA, Kaups KL, et al. The association between Chance fractures and intra-abdominal injuries revisited: a multicenter review. Am Surg. 2005 May. 71 (5):434-8. [Medline].

Crawford CH 3rd, Puno RM, Campbell MJ, Carreon LY. Surgical management of severely displaced pediatric seat-belt fracture-dislocations of the lumbar spine associated with occlusion of the abdominal aorta and avulsion of the cauda equina: a report of two cases. Spine (Phila Pa 1976). 2008 May 1. 33 (10):E325-8. [Medline].

Ball ST, Vaccaro AR, Albert TJ, Cotler JM. Injuries of the thoracolumbar spine associated with restraint use in head-on motor vehicle accidents. J Spinal Disord. 2000 Aug. 13(4):297-304. [Medline].

Ohana N, Sheinis D, Rath E, Sasson A, Atar D. Is there a need for lumbar orthosis in mild compression fractures of the thoracolumbar spine?: A retrospective study comparing the radiographic results between early ambulation with and without lumbar orthosis. J Spinal Disord. 2000 Aug. 13 (4):305-8. [Medline].

Al-Khalifa FK, Adjei N, Yee AJ, Finkelstein JA. Patterns of collapse in thoracolumbar burst fractures. J Spinal Disord Tech. 2005 Oct. 18(5):410-2. [Medline].

Lalonde F, Letts M, Yang JP, Thomas K. An analysis of burst fractures of the spine in adolescents. Am J Orthop. 2001 Feb. 30(2):115-20. [Medline].

Sanderson PL, Fraser RD, Hall DJ, Cain CM, Osti OL, Potter GR. Short segment fixation of thoracolumbar burst fractures without fusion. Eur Spine J. 1999. 8 (6):495-500. [Medline].

Blanco JF, De Pedro JA, Hernández PJ, Paniagua JC, Framiñán A. Conservative management of burst fractures of the fifth lumbar vertebra. J Spinal Disord Tech. 2005 Jun. 18 (3):229-31. [Medline].

Carl AL, Matsumoto M, Whalen JT. Anterior dural laceration caused by thoracolumbar and lumbar burst fractures. J Spinal Disord. 2000 Oct. 13(5):399-403. [Medline].

Dai LY. Remodeling of the spinal canal after thoracolumbar burst fractures. Clin Orthop Relat Res. 2001 Jan. (382):119-23. [Medline].

Razak M, Mahmud MM, Hyzan MY, Omar A. Short segment posterior instrumentation, reduction and fusion of unstable thoracolumbar burst fractures–a review of 26 cases. Med J Malaysia. 2000 Sep. 55 Suppl C:9-13. [Medline].

Marczynski W, Kroczak S, Baranski M. Fractures of thoracic and lumbar spine; treatment and follow up. Ann Transplant. 1999. 4(3-4):46-8. [Medline].

Woolard A, Oussedik S. Injuries to the lumbar spine: identification and management. Hosp Med. 2005 Jul. 66(7):384-8. [Medline].

Berry GE, Adams S, Harris MB, Boles CA, McKernan MG, Collinson F, et al. Are plain radiographs of the spine necessary during evaluation after blunt trauma? Accuracy of screening torso computed tomography in thoracic/lumbar spine fracture diagnosis. J Trauma. 2005 Dec. 59 (6):1410-3; discussion 1413. [Medline].

Croce MA, Bee TK, Pritchard E, Miller PR, Fabian TC. Does optimal timing for spine fracture fixation exist?. Ann Surg. 2001 Jun. 233 (6):851-8. [Medline].

Kerwin AJ, Frykberg ER, Schinco MA, Griffen MM, Arce CA, Nguyen TQ, et al. The effect of early surgical treatment of traumatic spine injuries on patient mortality. J Trauma. 2007 Dec. 63(6):1308-13. [Medline].

[Guideline] Chi JH, Eichholz KM, Anderson PA, Arnold PM, Dailey AT, Dhall SS, et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Evaluation and Treatment of Patients With Thoracolumbar Spine Trauma: Novel Surgical Strategies. Neurosurgery. 2018 Oct 8. [Medline]. [Full Text].

Elias WJ, Simmons NE, Kaptain GJ, Chadduck JB, Whitehill R. Complications of posterior lumbar interbody fusion when using a titanium threaded cage device. J Neurosurg. 2000 Jul. 93 (1 Suppl):45-52. [Medline].

Godlewski P, Mazurkiewicz T. [Use of transpedicular fixation in treatment of thoraco-lumbar spinal injuries]. Neurol Neurochir Pol. 2000 Nov-Dec. 34(6):1187-95. [Medline].

Knop C, Fabian HF, Bastian L, Blauth M. Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine (Phila Pa 1976). 2001 Jan 1. 26 (1):88-99. [Medline].

Baumann F, Krutsch W, Pfeifer C, Neumann C, Nerlich M, Loibl M. Posterolateral Fusion in Acute Traumatic Thoracolumbar Fractures: A Comparison of Demineralized Bone Matrix and Autologous Bone Graft. Acta Chir Orthop Traumatol Cech. 2015. 82 (2):119-125. [Medline].

Oishi M, Onesti ST. Electrical bone graft stimulation for spinal fusion: a review. Neurosurgery. 2000 Nov. 47(5):1041-55; discussion 1055-6. [Medline].

Pham MH, Tuchman A, Chen TC, Acosta FL, Hsieh PC, Liu JC. Transpedicular Corpectomy and Cage Placement in the Treatment of Traumatic Lumbar Burst Fractures. Clin Spine Surg. 2017 Oct. 30 (8):360-366. [Medline].

Tezeren G, Kuru I. Posterior fixation of thoracolumbar burst fracture: short-segment pedicle fixation versus long-segment instrumentation. J Spinal Disord Tech. 2005 Dec. 18(6):485-8. [Medline].

Kim TK, Kim KH, Kim CH, Shin SW, Kwon JY, Kim HK, et al. Percutaneous vertebroplasty and facet joint block. J Korean Med Sci. 2005 Dec. 20 (6):1023-8. [Medline].

Girardo M, Cinnella P, Gargiulo G, Viglierchio P, Rava A, Aleotti S. Surgical treatment of osteoporotic thoraco-lumbar compressive fractures: the use of pedicle screw with augmentation PMMA. Eur Spine J. 2017 Oct. 26 (Suppl 4):546-551. [Medline].

Pradhan BB, Bae HW, Kropf MA, Patel VV, Delamarter RB. Kyphoplasty reduction of osteoporotic vertebral compression fractures: correction of local kyphosis versus overall sagittal alignment. Spine (Phila Pa 1976). 2006 Feb 15. 31 (4):435-41. [Medline].

Verlaan JJ, van de Kraats EB, Oner FC, van Walsum T, Niessen WJ, Dhert WJ. The reduction of endplate fractures during balloon vertebroplasty: a detailed radiological analysis of the treatment of burst fractures using pedicle screws, balloon vertebroplasty, and calcium phosphate cement. Spine (Phila Pa 1976). 2005 Aug 15. 30 (16):1840-5. [Medline].

Kitzen J, Schotanus MGM, Plasschaert HSW, Hulsmans FH, Tilman PBJ. Treatment of thoracic or lumbar burst fractures with Balloon Assisted Endplate Reduction using Tricalcium Phosphate cement: histological and radiological evaluation. BMC Musculoskelet Disord. 2017 Oct 10. 18 (1):411. [Medline]. [Full Text].

Hiwatashi A, Sidhu R, Lee RK, deGuzman RR, Piekut DT, Westesson PL. Kyphoplasty versus vertebroplasty to increase vertebral body height: a cadaveric study. Radiology. 2005 Dec. 237 (3):1115-9. [Medline].

Karlsson MK, Hasserius R, Gerdhem P, Obrant KJ, Ohlin A. Vertebroplasty and kyphoplasty: New treatment strategies for fractures in the osteoporotic spine. Acta Orthop. 2005 Oct. 76 (5):620-7. [Medline].

Kim JC, Choi YS, Kim KN, Shim JK, Lee JY, Kwak YL. Effective dose of peri-operative oral pregabalin as an adjunct to multimodal analgesic regimen in lumbar spinal fusion surgery. Spine (Phila Pa 1976). 2011 Mar 15. 36(6):428-33. [Medline].

Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol. 2006 Jan. 27(1):217-23. [Medline].

Federico C Vinas, MD Consulting Neurosurgeon, Department of Neurological Surgery, Halifax Medical Center

Federico C Vinas, MD is a member of the following medical societies: American Association of Neurological Surgeons, American College of Surgeons, American Medical Association, Florida Medical Association, North American Spine Society, Congress of Neurological Surgeons

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

William O Shaffer, MD Orthopedic Spine Surgeon, Northwest Iowa Bone, Joint, and Sports Surgeons

William O Shaffer, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American Orthopaedic Association, Kentucky Medical Association, North American Spine Society, Kentucky Orthopaedic Society, International Society for the Study of the Lumbar Spine, Southern Medical Association, Southern Orthopaedic Association

Disclosure: Received royalty from DePuySpine 1997-2007 (not presently) for consulting; Received grant/research funds from DePuySpine 2002-2007 (closed) for sacropelvic instrumentation biomechanical study; Received grant/research funds from DePuyBiologics 2005-2008 (closed) for healos study just closed; Received consulting fee from DePuySpine 2009 for design of offset modification of expedium.

Jeffrey A Goldstein, MD Clinical Professor of Orthopedic Surgery, New York University School of Medicine; Director of Spine Service, Director of Spine Fellowship, Department of Orthopedic Surgery, NYU Hospital for Joint Diseases, NYU Langone Medical Center

Jeffrey A Goldstein, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American College of Surgeons, American Orthopaedic Association, AOSpine, Cervical Spine Research Society, International Society for the Advancement of Spine Surgery, International Society for the Study of the Lumbar Spine, Lumbar Spine Research Society, North American Spine Society, Scoliosis Research Society, Society of Lateral Access Surgery

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Medtronic, Nuvasive, NLT Spine, RTI, Magellan Health<br/>Received consulting fee from Medtronic for consulting; Received consulting fee from NuVasive for consulting; Received royalty from Nuvasive for consulting; Received consulting fee from K2M for consulting; Received ownership interest from NuVasive for none.

Lee H Riley III, MD Chief, Division of Orthopedic Spine Surgery, Associate Professor, Departments of Orthopedic Surgery and Neurosurgery, Johns Hopkins University School of Medicine

Disclosure: Nothing to disclose.

Lumbar Spine Fractures and Dislocations

Research & References of Lumbar Spine Fractures and Dislocations|A&C Accounting And Tax Services
Source

Send your purchase information or ask a question here!

10 + 5 =

Welcome To Knowledge-Easy Management Sound Tips and Thank You Very Much! Have a great day!

From Admin and Read More here. A note for you if you pursue CPA licence, KEEP PRACTICE with the MANY WONDER HELPS I showed you. Make sure to check your works after solving simulations. If a Cashflow statement or your consolidation statement is balanced, you know you pass right after sitting for the exams. I hope my information are great and helpful. Implement them. They worked for me. Hey.... turn gray hair to black also guys. Do not forget HEALTH? Skill level Progression is without a doubt the number 1 significant and primary consideration of acquiring valid financial success in most of jobs as you observed in the population along with in World-wide. Hence fortuitous to examine together with everyone in the next in regard to exactly what prosperous Skill Improvement is;. the way or what procedures we function to gain aspirations and gradually one will certainly job with what whomever is in love with to implement every working day intended for a total your life. Is it so superb if you are in a position to establish resourcefully and obtain achievements in the things you thought, directed for, regimented and worked well hard just about every single day time and certainly you turn out to be a CPA, Attorney, an master of a large manufacturer or even a medical doctor who could exceptionally contribute very good support and valuations to other folks, who many, any contemporary society and society absolutely shown admiration for and respected. I can's imagine I can assist others to be finest high quality level exactly who will lead essential choices and pain relief valuations to society and communities at present. How completely happy are you if you develop into one just like so with your own name on the headline? I have arrived on the scene at SUCCESS and prevail over many the really difficult sections which is passing the CPA tests to be CPA. Furthermore, we will also take care of what are the hurdles, or other sorts of challenges that is perhaps on a person's way and how I have personally experienced all of them and might present you easy methods to conquer them.

0 Comments

Submit a Comment

Business Best Sellers

 

Get Paid To Use Facebook, Twitter and YouTube
Online Social Media Jobs Pay $25 - $50/Hour.
No Experience Required. Work At Home, $316/day!
View 1000s of companies hiring writers now!
Order Now!

 

MOST POPULAR

*****

Customer Support Chat Job: $25/hr
Chat On Twitter Job - $25/hr
Get Paid to chat with customers on
a business’s Twitter account.
Try Free Now!

 

Get Paid To Review Apps On Phone
Want to get paid $810 per week online?
Get Paid To Review Perfect Apps Weekly.
Order Now!

Look For REAL Online Job?
Get Paid To Write Articles $200/day
View 1000s of companies hiring writers now!
Try-Out Free Now!

 

 
error: Content is protected !!