Wolff-Parkinson-White Syndrome

by | Feb 10, 2019 | Uncategorized | 0 comments

All Premium Themes And WEBSITE Utilities Tools You Ever Need! Greatest 100% Free Bonuses With Any Purchase.

Greatest CYBER MONDAY SALES with Bonuses are offered to following date: Get Started For Free!
Purchase Any Product Today! Premium Bonuses More Than $10,997 Will Be Emailed To You To Keep Even Just For Trying It Out.
Click Here To See Greatest Bonuses

and Try Out Any Today!

Here’s the deal.. if you buy any product(s) Linked from this sitewww.Knowledge-Easy.com including Clickbank products, as long as not Google’s product ads, I am gonna Send ALL to you absolutely FREE!. That’s right, you WILL OWN ALL THE PRODUCTS, for Now, just follow these instructions:

1. Order the product(s) you want by click here and select the Top Product, Top Skill you like on this site ..

2. Automatically send you bonuses or simply send me your receipt to consultingadvantages@yahoo.com Or just Enter name and your email in the form at the Bonus Details.

3. I will validate your purchases. AND Send Themes, ALL 50 Greatests Plus The Ultimate Marketing Weapon & “WEBMASTER’S SURVIVAL KIT” to you include ALL Others are YOURS to keep even you return your purchase. No Questions Asked! High Classic Guaranteed for you! Download All Items At One Place.

That’s it !

*Also Unconditionally, NO RISK WHAT SO EVER with Any Product you buy this website,

60 Days Money Back Guarantee,

IF NOT HAPPY FOR ANY REASON, FUL REFUND, No Questions Asked!

Download Instantly in Hands Top Rated today!

Remember, you really have nothing to lose if the item you purchased is not right for you! Keep All The Bonuses.

Super Premium Bonuses Are Limited Time Only!

Day(s)

:

Hour(s)

:

Minute(s)

:

Second(s)

Get Paid To Use Facebook, Twitter and YouTube
Online Social Media Jobs Pay $25 - $50/Hour.
No Experience Required. Work At Home, $316/day!
View 1000s of companies hiring writers now!

Order Now!

MOST POPULAR

*****
Customer Support Chat Job: $25/hr
Chat On Twitter Job - $25/hr
Get Paid to chat with customers on
a business’s Twitter account.

Try Free Now!

Get Paid To Review Apps On Phone
Want to get paid $810 per week online?
Get Paid To Review Perfect Apps Weekly.

Order Now
!
Look For REAL Online Job?
Get Paid To Write Articles $200/day
View 1000s of companies hiring writers now!

Try-Out Free Now!

How To Develop Your Skill For Great Success And Happiness Including Become CPA? | Additional special tips From Admin

Proficiency Advancement will be the number 1 essential and key element of realizing authentic success in most jobs as most people spotted in some of our population not to mention in World-wide. Consequently happy to explain together with everyone in the following in regard to what exactly powerful Proficiency Enhancement is; the simplest way or what tactics we function to gain desires and in the end one is going to succeed with what individual likes to perform just about every single daytime to get a comprehensive daily life. Is it so amazing if you are effective to grow efficiently and uncover achieving success in what precisely you believed, targeted for, disciplined and been effective hard any day and most certainly you grown to be a CPA, Attorney, an owner of a sizeable manufacturer or quite possibly a health care provider who are able to very play a role excellent aid and valuations to many people, who many, any culture and neighborhood absolutely shown admiration for and respected. I can's imagine I can guidance others to be very best expert level who seem to will make contributions considerable methods and help values to society and communities today. How satisfied are you if you end up one similar to so with your personal name on the title? I get landed at SUCCESS and get over all the tough segments which is passing the CPA exams to be CPA. Furthermore, we will also go over what are the hurdles, or various other complications that will be on ones own process and just how I have personally experienced them and can indicate you tips on how to prevail over them. | From Admin and Read More at Cont'.

Wolff-Parkinson-White Syndrome

No Results

No Results

processing….

In 1930, Wolff, Parkinson, and White described a series of young patients who experienced paroxysms of tachycardia and had characteristic abnormalities on electrocardiography (ECG). [1] Currently, Wolff-Parkinson-White (WPW) syndrome is defined as a congenital condition involving abnormal conductive cardiac tissue between the atria and the ventricles that provides a pathway for a reentrant tachycardia circuit, in association with supraventricular tachycardia (SVT). See the image below for a typical “preexcited” ECG.

The clinical manifestations of WPW syndrome reflect the associated tachyarrhythmia episodes—rather than the anomalous ventricular excitation per se. They may have their onset at any time from childhood to middle age, and they can vary in severity from mild chest discomfort or palpitations with or without syncope to severe cardiopulmonary compromise and cardiac arrest. Thus, presentation varies by patient age.

Infants may present with the following:

A verbal child with WPW syndrome usually reports the following:

Older patients can usually describe the following:

Physical findings include the following:

Clinical features of associated cardiac defects may be present, such as the following:

See Clinical Presentation for more detail.

Routine blood studies may be needed to help rule out noncardiac conditions triggering tachycardia. These may include the following:

The diagnosis of WPW syndrome is typically made with a 12-lead electrocardiogram (ECG) and sometimes with ambulatory monitoring (eg, telemetry, Holter monitoring). SVT is best diagnosed by documenting a 12-lead ECG during tachycardia, although it is often diagnosed with a monitoring strip or even recorder. The index of suspicion is based on the history, and rarely, physical examination (Ebstein anomaly or hypertrophic cardiomyopathy [HOCM]). Although the ECG morphology varies widely, the classic ECG features are as follows:

Echocardiography is needed for the following:

Stress testing is ancillary and may be used for the following:

Electrophysiologic studies (EPS) can be used in patients with WPW syndrome to determine the following:

See Workup for more detail.

Treatment of WPW associated arrhythmias comprises the following:

Termination of acute episodes

Narrow-complex AV reentrant tachycardia (AVRT) and AV nodal reentrant tachycardia (AVNRT) are treated by blocking AV node conduction with the following:

Atrial flutter/fibrillation or wide-complex tachycardia is treated as follows:

The initial treatment of choice for hemodynamically unstable tachycardia is direct-current synchronized electrical cardioversion, biphasic, as follows:

Radiofrequency ablation

Radiofrequency ablation is indicated in the following patients:

Surgical treatment

Radiofrequency catheter ablation has virtually eliminated surgical open heart treatments in the vast majority of WPW patients, with the following exceptions:

Long-term antiarrhythmic therapy

Oral medication is the mainstay of therapy in patients not undergoing radiofrequency ablation, although the response to long-term antiarrhythmic therapy for the prevention of further episodes of tachycardia in patients with WPW syndrome remains quite variable and unpredictable. Choices include the following:

See Treatment and Medication for more detail.

In 1930, Wolff, Parkinson, and White described a series of young patients who had a bundle branch block pattern on electrocardiography (ECG) findings, a short PR interval, and paroxysms of tachycardia. [1] Case reports began appearing in the literature in the late 1930s and early 1940s, and the term Wolff-Parkinson-White (WPW) syndrome was coined in 1940.

Although “preexcitation” was first coined by Ohnell in a landmark publication in 1944, the term as defined by Durrer et al in 1970 provided a better description in the literature of what an accessory pathway is (before the advent of invasive electrophysiologic studies and ablation provided a clearer understanding): “Preexcitation exists, if in relation to atrial events, the whole or some part of the ventricular muscle is activated earlier by the impulse originating from the atrium than would be expected if the impulse reached the ventricles by way of the normal specific conduction system only.” [6]

WPW syndrome is currently defined as a congenital abnormality involving the presence of abnormal conductive cardiac tissue between the atria and the ventricles in association with supraventricular tachycardia (SVT). It involves preexcitation, which occurs because of conduction of an atrial impulse not by means of the normal conduction system, but via an extra atrioventricular (AV) muscular connection, termed an accessory pathway (AP), that bypasses the AV node. [4, 7]

Classic ECG findings that are associated with WPW syndrome include the following:

Patients with WPW syndrome are potentially at an increased risk of dangerous ventricular arrhythmias as a consequence of conduction across the bypass tract resulting in a very rapid and chaotic depolarization of the ventricle if they develop atrial flutter or atrial fibrillation (AF).

Some patients have a concealed bypass tract. Although they have an accessory AV connection, it lacks antegrade conduction; accordingly, these patients do not have the classic abnormalities of the surface ECG. Most commonly, this is established by electrophysiologic study performed for the evaluation or treatment of  SVT.

Only a small percentage of patients with WPW syndrome (<1%) are at risk for sudden cardiac death (SCD). In patients who present with preexcited AF, cardiac electrophysiologic studies and radiofrequency (RF) catheter ablation may be curative. Other presentations include symptomatic SVT, which can also be cured by catheter ablation. Asymptomatic patients need periodic observation. The onset of cardiac arrhythmias, and possibly the sudden death risk, may be eliminated by prophylactic catheter ablation as well. [8]

This review discusses the pathogenesis, clinical presentation, evaluation, and treatment of patients with WPW syndrome.

Accessory pathways or connections between the atrium and ventricle are the result of anomalous embryonic development of myocardial tissue bridging the fibrous tissues that separate the two chambers. This allows electrical conduction between the atria and ventricles at sites other than the AV node. Passage through APs circumvents the usual conduction delay between the atria and ventricles, which normally occurs at the AV node, and predisposes the patient to develop tachydysrhythmias.

Although dozens of locations for bypass tracts can exist in preexcitation, including atriofascicular, fasciculoventricular, nodofascicular, or nodoventricular, the most common bypass tract is an accessory AV pathway otherwise known as a Kent bundle. This is the anomaly seen in WPW syndrome. The primary feature that differentiates WPW syndrome from other AP-mediated supraventricular tachycardias (SVTs) is the ability of the AP to conduct in either an antegrade (ie, from atrium to ventricles) or a retrograde manner.

The presence of an AP sets up the potential for reentrant tachycardia circuits to be established or for preexcited tachycardia in the setting of atrial fibrillation, atrial flutter, or SVT with a bystander accessory pathway. This reentrant mechanism is the typical cause of the SVT of which patients with preexcitation are at risk. The genesis of reentrant SVT involves the presence of dual conducting pathways between the atria and the ventricles [9] :

These pathways usually exhibit different conduction properties and refractory periods that facilitate reentry. The effective refractory period (ERP, the time necessary for the electrical recovery needed to conduct the next impulse) of the accessory tract is often longer than that of the normal AV nodal His-Purkinje tract and requires time for conduction to recover before allowing reentry.

The degree of preexcitation on a surface ECG in a person with WPW pattern can be estimated by the width of the QRS and the length of the PR interval. A wider or more preexcited QRS with a short PR interval with absent or nearly absent isoelectric component reveals that most (or all) of the ventricular depolarization initiates through the AP insertion rather than through the AV node/His Purkinje system. This would be typical with right free wall pathways where the atrial insertion is close to the sinoatrial (SA) node.

However, the QRS width may vary, becoming narrower during more rapid heart rates. This is possible because catecholamines permit the AV node to contribute more (or entirely) to ventricular depolarization by enhancing AV node conduction; the AV node connects to the entire and usual His-Purkinje system, resulting in the narrow QRS complex.

Types of SVT include orthodromic tachycardia (down the AV nodal His-Purkinje system and retrograde conduction up an AP), orthodromic tachycardia with a concealed AP (retrograde conduction only), and antidromic tachycardia (down the AP and retrograde conduction up the His-Purkinje system and AV node). In patients with WPW in which the AP participates in the reentrant circuit, 95% of SVT is due to orthodromic tachycardia and 5% is due to antidromic tachycardia.

When a premature ectopic atrial impulse advances towards the ventricle, it has the potential to block at the AP but conduct down the normal AVN/His Purkinje pathway. The impulse then reenters the AP in a retrograde fashion to perpetuate a circus movement of the impulse. Such reentrant tachycardia is described as orthodromic. Premature ventricular contractions (PVCs) can also initiate orthodromic tachycardia.

In orthodromic tachycardia, the normal pathway is used for ventricular depolarization, and the AP is used for the retrograde conduction essential for reentry. On ECG findings, the delta wave is absent, the QRS complex is normal, and P waves are typically inverted in the inferior and lateral leads.

Some APs are unable to conduct in an antegrade fashion. These are called concealed APs, because “manifest” preexcitation is a delta wave that is visible on a surface 12-lead ECG. (Technically, concealed pathways should not be classifed as a WPW syndrome, because there is no delta wave.) They account for about 30% of all SVTs induced on EPS.

Although no evidence of the pathway is present during sinus rhythm (ie, no preexcitation on ECG), orthodromic tachycardias can occur. Orthodromic tachycardia may also occur when there are two or more accessory connections, and in that case, the retrograde conduction may occur through the AV node, through one of the accessory connections, or through both.

This type of SVT may be difficult to distinguish from the usual AV nodal reentrant tachycardia (AVNRT) on a standard surface ECG. In adults, if the heart rate is higher than 200 bpm or a retrograde P wave is visible in the ST segment (long R-P tachycardia), a concealed AP-mediated orthodromic reentrant tachycardia (ORT) may be the diagnosis. However, this determination is most accurately made with electrophysiologic studies (EPS), or if SVT terminates with a single PVC. Other differentiating factors include the following [10] :

Less commonly, a shorter refractory period in the AP may cause blockade of an ectopic atrial impulse in the normal pathway, with antegrade conduction down the AP and then retrograde reentry of the normal AV nodal pathway. This type of tachycardia is called antidromic tachycardia.

On ECG, the QRS is wide, reflecting an exaggeration of the delta wave during sinus rhythm (ie, wide-QRS tachycardia). Such tachycardias are difficult to differentiate from ventricular tachycardias and often have a slurred R wave upstroke with QRS duration longer than 160 ms.

Only about 5% of the tachycardias in patients who have WPW syndrome are antidromic tachycardias; the remaining 95% are orthodromic. Even when the AP conducts solely in a retrograde fashion, it can still participate in the reentrant circuit and produce an orthodromic AV reciprocating tachycardia with a narrow QRS morphology. The presence of an antidromic tachycardia should prompt a careful search for a second bypass tract. [10, 11]  About 10-15% of patients with WPW have a second pathway. [11]

APs are considered congenital phenomena that are related to a failure of insulating tissue maturation within the AV ring—even though their manifestations are often detected in later years, making them appear to be “acquired.” On rare occasions, acquired WPW syndrome has occurred in patients who have undergone congenital heart surgery, which may be owing to an acquired functional epicardial AV connection. [12]

Family studies, as well as molecular genetic investigations, indicate that WPW syndrome, along with associated preexcitation disorders, may have a genetic component. It may be inherited as a familial trait, with or without associated congenital heart defects (CHDs) [13] ; 3.4% of those with WPW syndrome have first-degree relatives with preexcitation.

The familial form is usually inherited as a mendelian autosomal dominant trait. Although rare, mitochondrial inheritance has also been described. The syndrome may also be inherited with other cardiac and noncardiac disorders, such as familial atrial septal defects, familial hypokalemic periodic paralysis, and tuberous sclerosis.

Clinicians have long recognized the association of WPW syndrome with autosomal dominant familial hypertrophic cardiomyopathy. However, only comparatively recently was a genetic substrate linking hypertrophic cardiomyopathy to WPW syndrome and skeletal myopathy described. [2]

Patients with mutations in the gamma 2 subunit of adenosine monophosphate (AMP)-activated protein kinase (PRKAG2) develop cardiomyopathy characterized by ventricular hypertrophy, WPW syndrome, AV block, and progressive degenerative conduction system disease. The mutation is believed to produce disruption of the annulus fibrosus by accumulation of glycogen within myocytes, which causes preexcitation. This is thought to be the case in Pompe disease, Danon disease, and other glycogen-storage diseases.

Infantile Pompe disease or glycogen-storage disease type II is a fatal genetic muscle disorder that is caused by deficiency of acid alpha-glucosidase (GAA). These patients have a shortened PR interval, large left ventricular (LV) voltages, and an increased QT dispersion (QTd).

More recently, investigators appeared to have identified a novel locus in a family with WPW, MYH6 p.E1885K. [14] All of the family members with WPW but none of the unaffected relatives demonstrated this variant. MYH6 variants have been associated with atrial septal defects, cardiomyopathies, and sick sinus syndrome. [14]

Mutations in the lysosome-associated membrane protein 2 (LAMP2), which cause accumulation of cardiac glycogen, are thought to be the etiology of a significant number of hypertrophic cardiomyopathies in children, especially when skeletal myopathy, WPW syndrome, or both are present.

For example, Danon disease is an X-linked lysosomal cardioskeletal myopathy; males are more often and more severely affected than females. It is caused by mutations in the LAMP2 that produce proximal muscle weakness and mild atrophy, left ventricle hypertrophy, WPW syndrome, and mental retardation.

Patients with the Ebstein anomaly may develop WPW syndrome. They frequently have multiple accessory bypass tracts, mostly on the right, in the posterior part of the septum or the posterolateral wall of the right ventricle. The orthodromic reciprocating tachycardia in such patients often exhibits right bundle-branch block (RBBB) and a long ventriculoatrial (VA) interval.

Preexcitation can be surgically created, as in certain types of Bjork modifications of the Fontan procedure, if atrial tissue is flapped onto and sutured to ventricular tissue. Certain tumors of the AV ring, such as rhabdomyomas, may also cause preexcitation.

The prevalence of ventricular preexcitation is thought to be 0.1-0.3%, or 1-3 per 1000 people in the general population. Estimates of arrhythmia incidence in patients with preexcitation vary widely, ranging from 12% to 80% in several surveys.

The incidence of preexcitation and WPW syndrome ranges from 0.1 to 3 cases per 1000 population (average, 1.5 cases per 1000 population) in otherwise healthy persons. This includes only patients with manifest preexcitation (delta wave evident on surface 12-lead ECG). About 60-70% of these individuals have no other evidence of heart disease. Approximately four newly diagnosed cases of WPW syndrome per 100,000 population occur each year.

In a review of ECG findings from 22,500 healthy aviation personnel, 0.25% exhibited findings consistent with the WPW pattern, with a 1.8% reported incidence of tachycardia.

The location of the accessory pathways (APs), in descending order of frequency, is (1) 53%, the left free wall, (2) 36%, posteroseptal, (3) 8%, right free wall, and (4) 3%, anteroseptal. The presence of concealed APs accounts for approximately 30% of patients with apparent SVT referred for electrophysiologic studies (EPS). These patients do not have “classic” WPW syndrome because no delta wave is present, but they do have the potential for orthodromic tachycardia.

Approximately 80% of patients with WPW syndrome have a reciprocating tachycardia, 15-30% will develop atrial fibrillation (AF), and 5% have atrial flutter. VT is uncommon. Patients with mitral valve prolapse have an association with WPW, but the mechanism is unclear.

Worldwide, the incidence and prevalence of WPW syndrome parallel those seen in the United States.

WPW syndrome is found in persons of all ages. Most patients with WPW syndrome present during infancy. However, a second peak of presentation is noted in school-aged children and in adolescents. This interesting bimodal age distribution is due to permanent or transitory loss of preexcitation during infancy in some patients and during late adolescence in others.

The prevalence of WPW syndrome decreases with age as a consequence of apparent attenuation of conduction speed in the AP. About one fourth of patients lose preexcitation over a 10-year period, probably as a result of fibrotic changes at the site of insertion of the accessory bypass tract with loss of electrical conduction properties between cardiac chambers. Cases have been described in which ECG evidence of preexcitation disappears completely. One tenth of patients with concealed APs lose retrograde conduction over 10 years.

In asymptomatic patients, antegrade conduction across the AP may spontaneously disappear with advancing age (one fourth of patients lose antegrade bypass tract conduction over 10 years).

In patients with abnormal ECG findings indicative of WPW syndrome, the frequency of SVT paroxysms increases from 10% in people aged 20-39 years to 36% in people older than 60 years. [15] Overall, about 50% of patients with WPW develop tachyarrhythmias.

WPW pattern appears to affect the two sexes equally; however, WPW syndrome has been found to be more frequent in males. One study documented a male-to-female ratio of approximately 2:1. Another reported 1.4 cases of WPW syndrome per 1000 men and 0.9 cases per 1000. A third study found a 3.5-fold higher prevalence of WPW syndrome in men.

No clear racial predilection appears to exist.

Once identified and appropriately treated, WPW syndrome is associated with an excellent prognosis, including the potential for permanent cure through radiofrequency (RF) catheter ablation.

Asymptomatic patients with only preexcitation on ECG generally have a very good prognosis. Many develop symptomatic arrhythmias over time, which can be prevented with prophylactic EPS and RF catheter ablation. [16] Patients with a family history of sudden cardiac death (SCD) or significant symptoms of tachyarrhythmias or cardiac arrest have worse prognoses. However, once definitive therapy is performed, including curative ablation, the prognosis is once again excellent.

Noninvasive risk stratification (eg, Holter monitoring, exercise stress test) [17] can be useful if abrupt and complete loss of preexcitation occurs with exercise or procainamide infusion. However, this is not an absolute predictor for the absence of arrhythmic episodes. 

Mortality in WPW syndrome is rare and is related to SCD. The incidence of SCD in WPW syndrome is approximately 1 in 100 symptomatic cases when followed for up to 15 years. Although relatively uncommon, SCD may be the initial presentation in as many as 4.5% of cases.

Even in patients with asymptomatic WPW, the risk of SCD is increased above that of the general population. Medical therapy with agents such as digoxin may increase this risk if the patient has AF or atrial flutter by favoring atrial-to-ventricular conduction over the bypass tract rather than the AV node. The risk in asymptomatic patients is low and can be reduced further with prophylactic catheter ablation of the accessory pathway (EPS and RF ablation).

Other factors that appear to influence the risk of SCD are the presence of multiple bypass tracts, short AP refractory periods (<240 ms), AF and atrial flutter, or a family history of premature sudden death. SCD is unusual without preceding symptoms.

The cause of SCD in WPW syndrome is rapid conduction of AF to the ventricles via the AP, resulting in ventricular fibrillation (VF). AF develops in one fifth to one third of patients with WPW syndrome; the reasons for this and the effects of AP ablation on its development are unclear.

However, a study hypothesized that two mechanisms are involved in the pathogenesis of AF in patients with WPW syndrome: one is related to the AP that predisposes the atria to fibrillation, and the other is independent from the AP and is related to increased atrial vulnerability present in these individuals. [18]  Notably, AF may still occur and be symptomatic in some patients after successful ablation of the bypass tract, [11, 19]  but AF does not then carry the same associated risk of SCD.

In a study that evaluated the long-term (median, 6.9 y) natural history of WPW in adult patients treated with (n = 872) and without catheter ablation (n = 1461) compared to a control group (n = 11,175), Bunch et al found similarly low death rates but higher incident AF risk in patients with WPW versus the control group. [20]  The risk of long-term mortality was higher in those who did not undergo ablation compared to the group treated with ablation, whereas the risk of incident AF was higher in the ablation group. Thus, ablation did not reduce the risk of AF.

According to the literature, risk factors for the development of AF in the setting of WPW syndrome include advancing age (two peak ages for AF occurrence are recognized, one at 30 years and the other at 50 years), male sex, and prior history of syncope. [21]

Certain factors increase the likelihood of VF, including rapidly conducting APs and multiple pathways. [22] Cases have also been reported in association with esophageal studies, digoxin, and verapamil. A few reports document spontaneous VF in WPW syndrome, and SVT may degenerate into AF, thus leading to VF [23] ; however, both scenarios are rare in pediatric patients.

Morbidity may be related to rapid near syncope or syncopal arrhythmias. Even when syncope is absent, the arrhythmia episodes may be highly symptomatic. In most patients, the SVT is well tolerated and is not life threatening. However, the potential for syncope, hemodynamically compromising rhythms, or sudden death may prevent patients with WPW syndrome from participating in competitive sports or hazardous occupations until the substrate is definitively addressed and cured by a catheter ablation procedure.

Complications include the following:

Patient education is of paramount importance in patients with WPW syndrome. This is especially true in asymptomatic young patients who have been told of their abnormal ECG results. Periodic follow-up care of such patients is necessary, along with thoughtful discussions of consideration for EPS and prophylactic catheter ablation.

Urge patients to carry a sample ECG in sinus rhythm and a medical identification bracelet in case of cardiac arrest.

Educate patients who are being treated with drug therapy thoroughly regarding the disease and the type of medications they are taking. Such patients must be taught the following:

Patients with WPW syndrome should also educate their family members, and their siblings should be screened for preexcitation with 12-lead ECG.

For patient education resources, see the Heart Center, as well as Supraventricular Tachycardia.

Wolff L, Parkinson J, White PD. Bundle-branch block with short P-R interval in healthy young people prone to paroxysmal tachycardia. Am Heart J. 1930 Aug. 5(6):685-704. [Full Text].

Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001 Jun 14. 344(24):1823-31. [Medline].

Calkins H, Kuck KH, Cappato R, et al, for the Heart Rhythm Society Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology … Heart Rhythm. 2012 Apr. 9 (4):632-696.e21. [Medline].

Calkins H, Sousa J, el-Atassi R, et al. Diagnosis and cure of the Wolff-Parkinson-White syndrome or paroxysmal supraventricular tachycardias during a single electrophysiologic test. N Engl J Med. 1991 Jun 6. 324(23):1612-8. [Medline].

Sarubbi B, D’Alto M, Vergara P, et al. Electrophysiological evaluation of asymptomatic ventricular pre-excitation in children and adolescents. Int J Cardiol. 2005 Feb 15. 98(2):207-14. [Medline].

Durrer D, Schuilenburg RM, Wellens HJ. Pre-excitation revisited. Am J Cardiol. 1970 Jun. 25(6):690-7. [Medline].

Pappone C, Vicedomini G, Manguso F, et al. Risk of malignant arrhythmias in initially symptomatic patients with Wolff-Parkinson-White syndrome: results of a prospective long-term electrophysiological follow-up study. Circulation. 2012 Feb 7. 125(5):661-8. [Medline].

Pappone C, Santinelli V, Manguso F, et al. A randomized study of prophylactic catheter ablation in asymptomatic patients with the Wolff-Parkinson-White syndrome. N Engl J Med. 2003 Nov 6. 349(19):1803-11. [Medline].

Sethi KK, Dhall A, Chadha DS, Garg S, Malani SK, Mathew OP. WPW and preexcitation syndromes. J Assoc Physicians India. 2007 Apr. 55 Suppl:10-5. [Medline].

Katritsis DG, Camm AJ. Atrioventricular nodal reentrant tachycardia. Circulation. 2010 Aug 24. 122 (8):831-40. [Medline].

Stroobandt RX, Barold SS, Sinnaeve AF. Preexcitation and Wolff-Parkinson-White Syndrome (WPW). ECG from Basics to Essentials: Step by Step. Chichester, West Sussex, UK: John Wiley & Sons, Ltd; 2016. chapter 17.

Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Societ… Heart Rhythm. 2014 Oct. 11 (10):e102-65. [Medline].

Ehtisham J, Watkins H. Is Wolff-Parkinson-White syndrome a genetic disease?. J Cardiovasc Electrophysiol. 2005 Nov. 16(11):1258-62. [Medline].

Bowles NE, Jou CJ, Arrington CB, et al for the Baylor Hopkins Centers for Mendelian Genomics. Exome analysis of a family with Wolff-Parkinson-White syndrome identifies a novel disease locus. Am J Med Genet A. 2015 Aug 18. [Medline].

Brembilla-Perrot B, Yangni N’da O, Huttin O, et al. Wolff-Parkinson-White syndrome in the elderly: clinical and electrophysiological findings. Arch Cardiovasc Dis. 2008 Jan. 101(1):18-22. [Medline].

Pappone C, Santinelli V. Electrophysiology testing and catheter ablation are helpful when evaluating asymptomatic patients with Wolff-Parkinson-White pattern: the pro perspective. Card Electrophysiol Clin. 2015 Sep. 7 (3):371-6. [Medline].

Cohen MI, Triedman JK, Cannon BC, et al. PACES/HRS expert consensus statement on the management of the asymptomatic young patient with a Wolff-Parkinson-White (WPW, ventricular preexcitation) electrocardiographic pattern: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology Foundation (ACCF), the American Heart Association (AHA), the American Academy of Pediatrics (AAP), an… Heart Rhythm. 2012 Jun. 9 (6):1006-24. [Medline].

Zhang Y, Wang L. Atrial vulnerability is a major mechanism of paroxysmal atrial fibrillation in patients with Wolff-Parkinson-White syndrome. Med Hypotheses. 2006. 67(6):1345-7. [Medline].

Deneke T, Mügge A. Atrial fibrillation and Wolff-Parkinson-White syndrome: mechanisms revisited?. J Cardiovasc Electrophysiol. 2012 Mar. 23 (3):287-9. [Medline].

Bunch TJ, May HT, Bair TL, et al. Long-term natural history of adult Wolff-Parkinson-White syndrome patients treated with and without catheter ablation. Circ Arrhythm Electrophysiol. 2015 Oct 19. [Medline].

Szumowski L, Walczak F, Urbanek P, et al. Risk factors of atrial fibrillation in patients with Wolff-Parkinson-White syndrome. Kardiol Pol. 2004 Mar. 60(3):206-16; discussion 217. [Medline].

Bromberg BI, Lindsay BD, Cain ME, Cox JL. Impact of clinical history and electrophysiologic characterization of accessory pathways on management strategies to reduce sudden death among children with Wolff-Parkinson-White syndrome. J Am Coll Cardiol. 1996 Mar 1. 27(3):690-5. [Medline].

Attoyan C, Haissaguerre M, Dartigues JF, Le Metayer P, Warin JF, Clementy J. [Ventricular fibrillation in Wolff-Parkinson-White syndrome. Predictive factors]. Arch Mal Coeur Vaiss. 1994 Jul. 87(7):889-97. [Medline].

Kiger ME, McCanta AC, Tong S, Schaffer M, Runciman M, Collins KK. Intermittent versus Persistent Wolff-Parkinson-White Syndrome in Children: Electrophysiologic Properties and Clinical Outcomes. Pacing Clin Electrophysiol. 2015 Aug 8. [Medline].

Shah A, Hocini M, Haissaguerre M, Jais P. Non-invasive mapping of cardiac arrhythmias. Curr Cardiol Rep. 2015 Aug. 17 (8):60. [Medline].

Mark DG, Brady WJ, Pines JM. Preexcitation syndromes: diagnostic consideration in the ED. Am J Emerg Med. 2009 Sep. 27(7):878-88. [Medline].

Fengler BT, Brady WJ, Plautz CU. Atrial fibrillation in the Wolff-Parkinson-White syndrome: ECG recognition and treatment in the ED. Am J Emerg Med. 2007 Jun. 25(5):576-83. [Medline].

Arruda MS, McClelland JH, Wang X, et al. Development and validation of an ECG algorithm for identifying accessory pathway ablation site in Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol. 1998 Jan. 9(1):2-12. [Medline].

Burnes JE, Taccardi B, Rudy Y. A noninvasive imaging modality for cardiac arrhythmias. Circulation. 2000 Oct 24. 102(17):2152-8. [Medline]. [Full Text].

Ghosh S, Avari JN, Rhee EK, Woodard PK, Rudy Y. Hypertrophic cardiomyopathy with preexcitation: insights from noninvasive electrocardiographic imaging (ECGI) and catheter mapping. J Cardiovasc Electrophysiol. 2008 Nov. 19(11):1215-7. [Medline]. [Full Text].

Skanes AC, Obeyesekere M, Klein GJ. Electrophysiology testing and catheter ablation are helpful when evaluating asymptomatic patients with Wolff-Parkinson-White pattern: the con perspective. Card Electrophysiol Clin. 2015 Sep. 7 (3):377-83. [Medline].

Duszanska A, Lenarczyk R, Kowalski O, Streb W, Kukulski T, Kalarus Z. Evaluation of left ventricular systolic and diastolic function in patients with atrioventricular re-entrant tachycardia treated by radiofrequency current ablation. Acta Cardiol. 2008 Apr. 63(2):221-7. [Medline].

Jackman WM, Wang XZ, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff- Parkinson-White syndrome) by radiofrequency current. N Engl J Med. 1991 Jun 6. 324(23):1605-11. [Medline].

Pappone C, Radinovic A, Santinelli V. Sudden death and ventricular preexcitation: is it necessary to treat the asymptomatic patients?. Curr Pharm Des. 2008. 14(8):762-5. [Medline].

Capone CA, Ceresnak SR, Nappo L, Gates GJ, Schechter CB, Pass RH. Three-catheter technique for ablation of left-sided accessory pathways in Wolff-Parkinson-White is less expensive and equally successful when compared to a five-catheter technique. Pacing Clin Electrophysiol. 2015 Aug 27. [Medline].

[Guideline] January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014 Dec 2. 130 (23):e199-267. [Medline]. [Full Text].

[Guideline] Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB, Deal BJ, et al. 2015 ACC/AHA/HRS Guideline for the Management of Adult Patients With Supraventricular Tachycardia: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016 Apr 5. 133 (14):e506-74. [Medline]. [Full Text].

[Guideline] Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015 Nov 1. 36 (41):2793-867. [Medline]. [Full Text].

Pappone C, Manguso F, Santinelli R, et al. Radiofrequency ablation in children with asymptomatic Wolff-Parkinson-White syndrome. N Engl J Med. 2004 Sep 16. 351(12):1197-205. [Medline].

Christopher R Ellis, MD, FACC, FHRS Assistant Professor of Medicine, Cardiac Electrophysiology, Director of Clinical Arrhythmia Research, Vanderbilt Heart and Vascular Institute

Christopher R Ellis, MD, FACC, FHRS is a member of the following medical societies: Alpha Omega Alpha, American College of Cardiology, Heart Rhythm Society

Disclosure: Nothing to disclose.

Mikhael F El-Chami, MD Associate Professor, Department of Medicine, Division of Cardiology, Section of Electrophysiology, Emory University School of Medicine

Mikhael F El-Chami, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Cardiology, American Heart Association, Heart Rhythm Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Medtronic; Boston Scientific<br/>Received grant/research funds from Medtronic Inc for principle investigator.

Hugh D Allen, MD Professor, Department of Pediatrics, Division of Pediatric Cardiology and Department of Internal Medicine, Ohio State University College of Medicine

Hugh D Allen, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Pediatric Society, American Society of Echocardiography, Society for Pediatric Research, Society of Pediatric Echocardiography, and Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Stuart Berger, MD Professor of Pediatrics, Division of Cardiology, Medical College of Wisconsin; Chief of Pediatric Cardiology, Medical Director of Pediatric Heart Transplant Program, Medical Director of The Heart Center, Children’s Hospital of Wisconsin

Stuart Berger, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American College of Chest Physicians, American Heart Association, and Society for Cardiac Angiography and Interventions

Disclosure: Nothing to disclose.

M Silvana Horenstein, MD Assistant Professor, Department of Pediatrics, University of Texas Medical School at Houston; Medical Doctor Consultant, Legacy Department, Best Doctors, Inc

M Silvana Horenstein, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, and American Medical Association

Disclosure: Nothing to disclose.

Russell F Kelly MD, Assistant Professor, Department of Internal Medicine, Rush Medical College; Chairman of Adult Cardiology and Director of the Fellowship Program, Cook County Hospital

Russell F Kelly is a member of the following medical societies: American College of Cardiology

Disclosure: Nothing to disclose.

Brian Olshansky, MD Professor Emeritus of Medicine, Department of Internal Medicine, University of Iowa College of Medicine

Brian Olshansky, MD is a member of the following medical societies: American College of Cardiology, American Heart Association, Cardiac Electrophysiology Society, and Heart Rhythm Society

Disclosure: Guidant/Boston Scientific Honoraria Speaking and teaching; Medtronic Honoraria Speaking and teaching; Guidant/Boston Scientific Consulting fee Consulting; BioControl Consulting fee Consulting; Boehringer Ingelheim Consulting fee Consulting; Amarin Consulting fee Review panel membership; sanofi aventis Review panel membership

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Wolff-Parkinson-White Syndrome

Research & References of Wolff-Parkinson-White Syndrome|A&C Accounting And Tax Services
Source

Send your purchase information or ask a question here!

7 + 11 =

Welcome To Knowledge-Easy Management Sound Tips and Thank You Very Much! Have a great day!

From Admin and Read More here. A note for you if you pursue CPA licence, KEEP PRACTICE with the MANY WONDER HELPS I showed you. Make sure to check your works after solving simulations. If a Cashflow statement or your consolidation statement is balanced, you know you pass right after sitting for the exams. I hope my information are great and helpful. Implement them. They worked for me. Hey.... turn gray hair to black also guys. Do not forget HEALTH? Talent Expansion can be the number 1 vital and significant issue of having real achieving success in all of the duties as anyone witnessed in your population and in Globally. Which means fortunate enough to examine together with everyone in the adhering to regarding what good Skill Progression is;. precisely how or what means we function to acquire objectives and subsequently one will operate with what the person is in love with to complete every time of day for the purpose and meaningful of a full everyday life. Is it so terrific if you are able to grow quickly and come across success in the things you thought, targeted for, regimented and worked hard every single daytime and clearly you turn into a CPA, Attorney, an operator of a massive manufacturer or possibly even a medical doctor who may well really chip in superb guidance and principles to some people, who many, any culture and society clearly popular and respected. I can's imagine I can aid others to be best high quality level just who will bring vital treatments and elimination values to society and communities right now. How delighted are you if you turned out to be one such as so with your unique name on the label? I have landed at SUCCESS and conquer all the very difficult pieces which is passing the CPA qualifications to be CPA. Moreover, we will also cover what are the pitfalls, or various other challenges that may very well be on your current means and precisely how I have privately experienced all of them and will probably show you easy methods to defeat them.

0 Comments

Submit a Comment

Business Best Sellers

 

Get Paid To Use Facebook, Twitter and YouTube
Online Social Media Jobs Pay $25 - $50/Hour.
No Experience Required. Work At Home, $316/day!
View 1000s of companies hiring writers now!
Order Now!

 

MOST POPULAR

*****

Customer Support Chat Job: $25/hr
Chat On Twitter Job - $25/hr
Get Paid to chat with customers on
a business’s Twitter account.
Try Free Now!

 

Get Paid To Review Apps On Phone
Want to get paid $810 per week online?
Get Paid To Review Perfect Apps Weekly.
Order Now!

Look For REAL Online Job?
Get Paid To Write Articles $200/day
View 1000s of companies hiring writers now!
Try-Out Free Now!

 

 
error: Content is protected !!