Organ Preservation

by | Mar 7, 2019 | Uncategorized | 0 comments

All Premium Themes And WEBSITE Utilities Tools You Ever Need! Greatest 100% Free Bonuses With Any Purchase.

Greatest CYBER MONDAY SALES with Bonuses are offered to following date: Get Started For Free!
Purchase Any Product Today! Premium Bonuses More Than $10,997 Will Be Emailed To You To Keep Even Just For Trying It Out.
Click Here To See Greatest Bonuses

and Try Out Any Today!

Here’s the deal.. if you buy any product(s) Linked from this sitewww.Knowledge-Easy.com including Clickbank products, as long as not Google’s product ads, I am gonna Send ALL to you absolutely FREE!. That’s right, you WILL OWN ALL THE PRODUCTS, for Now, just follow these instructions:

1. Order the product(s) you want by click here and select the Top Product, Top Skill you like on this site ..

2. Automatically send you bonuses or simply send me your receipt to consultingadvantages@yahoo.com Or just Enter name and your email in the form at the Bonus Details.

3. I will validate your purchases. AND Send Themes, ALL 50 Greatests Plus The Ultimate Marketing Weapon & “WEBMASTER’S SURVIVAL KIT” to you include ALL Others are YOURS to keep even you return your purchase. No Questions Asked! High Classic Guaranteed for you! Download All Items At One Place.

That’s it !

*Also Unconditionally, NO RISK WHAT SO EVER with Any Product you buy this website,

60 Days Money Back Guarantee,

IF NOT HAPPY FOR ANY REASON, FUL REFUND, No Questions Asked!

Download Instantly in Hands Top Rated today!

Remember, you really have nothing to lose if the item you purchased is not right for you! Keep All The Bonuses.

Super Premium Bonuses Are Limited Time Only!

Day(s)

:

Hour(s)

:

Minute(s)

:

Second(s)

Get Paid To Use Facebook, Twitter and YouTube
Online Social Media Jobs Pay $25 - $50/Hour.
No Experience Required. Work At Home, $316/day!
View 1000s of companies hiring writers now!

Order Now!

MOST POPULAR

*****
Customer Support Chat Job: $25/hr
Chat On Twitter Job - $25/hr
Get Paid to chat with customers on
a business’s Twitter account.

Try Free Now!

Get Paid To Review Apps On Phone
Want to get paid $810 per week online?
Get Paid To Review Perfect Apps Weekly.

Order Now
!
Look For REAL Online Job?
Get Paid To Write Articles $200/day
View 1000s of companies hiring writers now!

Try-Out Free Now!

How To Develop Your Skill For Great Success And Happiness Including Become CPA? | Additional special tips From Admin

Competency Progression is certainly the number 1 critical and major element of acquiring a fact achieving success in almost all duties as one saw in our community and even in Worldwide. As a result privileged to talk over together with you in the soon after in relation to exactly what thriving Competence Improvement is; the best way or what procedures we function to enjoy ambitions and in due course one will probably deliver the results with what those likes to implement each and every daytime intended for a comprehensive living. Is it so superb if you are confident enough to develop properly and discover success in the things you dreamed, planned for, regimented and performed very hard each and every working day and certainly you turn out to be a CPA, Attorney, an person of a good sized manufacturer or possibly even a health practitioner who can easily extremely chip in awesome guide and valuations to others, who many, any population and society undoubtedly shown admiration for and respected. I can's believe that I can enable others to be prime professional level exactly who will chip in significant systems and relief valuations to society and communities at present. How joyful are you if you turned into one like so with your personally own name on the headline? I have arrived at SUCCESS and rise above all of the the hard sections which is passing the CPA qualifications to be CPA. At the same time, we will also deal with what are the dangers, or different situations that is likely to be on your method and just how I have professionally experienced them and is going to present you methods to get over them. | From Admin and Read More at Cont'.

Organ Preservation

No Results

No Results

processing….

According to data from the United Network for Organ Sharing (UNOS), more than 400,000 renal transplantations have been performed since the first successful renal transplantation in the 1950s. With improved surgical techniques and immunosuppressive medications, outcomes after renal and extrarenal (liver, pancreas, lung, heart) transplantation have continued to improve.

Most solid-organ transplantations are now performed as the therapeutic option of choice. In many cases, transplantation offers definitive treatment for a given disease entity. As a result, the list of indications for solid-organ transplantation has expanded considerably, placing increasing pressure on an already limited supply of donor organs.

The growth in the number of patients wanting or waiting for a transplant has outpaced the supply of available organs. As of April 2004, 96,060 patients were awaiting deceased donor organ transplantation in the United States, compared with half as many in 1995. [1, 2] The UNOS reported that, as of July 2000, 45,600 people on its national patient list were waiting for a kidney. [3] The average waiting time for a deceased donor kidney transplant is approaching 3 years, and that for heart transplants 18 months. [2] Each year, more patients are placed on the waiting lists than receive transplants, causing the waiting time to increase. With such constraints, preservation of organs for transport between centers becomes crucial.

The technology of organ preservation has improved considerably. Several organ-preservation solutions are available, and these are being constantly modified to provide improved organ storage and outcomes.

This article discusses the pathophysiology, techniques, and principles of organ preservation, and it describes various preservation solutions currently used for kidney, liver, pancreas, small-bowel, lung, and heart transplantations.

The removal, storage, and transplantation of a solid organ from a donor profoundly alters the homeostasis of the interior milieu of the organ. These effects manifest in the degree to which the return of normal organ function is delayed or prevented after transplantation is completed. The injury an organ sustains during recovery, preservation, and transplantation occurs primarily as a result of ischemia and hypothermia. Techniques for organ preservation serve to minimize this damage to promote optimal graft survival and function.

Damage to organs during transplantation occurs in 2 phases.

The first, the warm ischemic phase, includes the time from the interruption of circulation to the donor organ to the time the organ is flushed with hypothermic preservation solution. In multiorgan recovery, the organs are cooled before they are removed.

The second, the cold ischemic phase, occurs when the organ is preserved in a hypothermic state prior to transplantation into the recipient.

Integrity of the cell structure

The cell membrane plays a structural role for the cell and provides an active interface with the extracellular environment. Receptors, ion regulation, and enzyme systems linked to the cell-membrane complex contain extracellular, transmembrane, and intracellular components essential to their function.

The stability of the membrane to chemical and water permeability depends on the integrity of the lipid bilayer and on tight control of temperature, pH, and osmolarity. [4] Organ ischemia and preservation disrupt all these relations. Lowering the temperature causes a phase transition of lipids and results in profound changes in membrane stability. In addition, it drastically alters the function of membrane-bound enzymes. [4] Hypothermia-induced structural changes in the membrane increase permeability, which contributes to cell swelling. Therefore, organ-preservation solutions are hypertonic to minimize these alterations.

Ionic composition of the cell

The sodium-potassium adenosine triphosphatase (Na-K ATPase) pump functions to maintain the ionic composition of the cell. The pump is disrupted because of the lack of adenosine triphosphate (ATP) production and by excessive production of hydrogen ions because of anaerobic metabolism during ischemia. When the sodium-potassium ATPase pump is paralyzed, potassium moves out of the cell and diffuses down its concentration gradient to the extracellular space, whereas sodium, which is normally kept at a low concentration in the cell, pours in. This ionic shift causes cell swelling and disruption of the cell if unchecked. Current preservation solutions have electrolyte compositions similar to the milieu inside the cell, with high potassium and low sodium concentrations to minimize the osmotic gradients.

Hydrogen-ion production continues in ischemic organs and causes intracellular pH to decrease without replenishment of buffering capabilities. Under conditions requiring a switch from aerobic to anaerobic glycolysis, the production of lactic acid also increases. The liver appears to be especially susceptible to this type of injury.

Calcium ion permeability is increased with ischemia, and a rapid influx of calcium overpowers the intracellular buffering capacity. Calmodulin activity increases and, in turn, causes upregulation of phospholipases. Subsequent production of prostaglandin derivatives results in mitochondrial and cell-membrane injury. Increased cellular calcium concentrations also initiate myofibrillar contraction of the vascular smooth muscle, causing vasospasm and subsequent ischemic damage.

Endothelin, a 21–amino acid peptide with potent vasoconstrictor properties, is another factor that plays a major role in ischemia by inducing vasospasm, which delays recovery of organ function after revascularization. [5, 6] Investigators have evaluated the use of endothelin A and B receptor antagonists to improve results after solid-organ transplantation, reporting favorable results.

ATP generation

A combination of the anaerobic enzymatic breakdown of glucose (glycolysis) and aerobic cellular respiration provides for the energy requirements of aerobic cells. These processes encompass the transfer of electrons from organic molecules to molecular oxygen. Hypothermia decreases the metabolic rate and slows enzymatic degradation of cellular components, but metabolism is not completely suppressed. Cooling from 37°C to 0°C reduces cellular metabolism 12-fold. [4] Although metabolism and utilization of cellular energy stores are slowed, ATP and adenosine diphosphate (ADP), the major sources of cellular metabolic energy, are gradually depleted during hypothermia. This depletion is due to residual energy requirements of the cell that exceed the capacity of the cell to produce ATP.

During ischemia and organ preservation, the glycolytic pathway is shunted to lactate production with generation of 2 ATP, as the Krebs tricarboxylic acid cycle (TCA) cycle and mitochondrial respiration are impaired. Therefore, mitochondrial dysfunction is responsible for most of the changes in cellular energy associated with ischemia and organ preservation.

Hypothermic preservation reduces the activity of mitochondrial enzymes. [7] Cellular respiration, which requires adenine nucleotide substrates, is reduced. For ADP to be transported into the mitochondrion as a substrate for conversion to high-energy ATP, a membrane adenine nucleotide translocase is required. Hypothermia impairs the function of the translocase because amounts of ADP available in the mitochondria for conversion to ATP are decreased. [8] Phospholipid hydrolysis by phospholipases increases levels of free fatty acids, which also affect function of the translocase. Adenylate kinase converts excess ADP accumulating in the cytoplasm to ATP, and adenosine monophosphate accumulates as a by-product. This effect reduces purine synthesis and results in the loss of ATP precursors from the cell.

Vascular renal resistance during hypothermic machine perfusion has been found to be an independent risk factor for 1-year graft failure. Renal resistance must be taken into account when evaluating graft quality and predicting a successful outcome; however, renal resistance on its own cannot be used to precisely predict the outcome. [9]

Reperfusion injury

Much of the injury to transplanted organs occurs not during ischemia, but during reperfusion. This finding has led to many advances in organ preservation aimed at preventing this type of injury. Furthermore, some of the events that occur during reperfusion may result in enhanced immunogenicity of the graft. [10] Oxygen free-radicals generated during reperfusion are the main cause of the reperfusion injury, but cytokines and nitric oxide also play a role. [10, 11]

Oxygen free-radicals are the most important mediators of reperfusion injury and act by means of various mechanisms. During ischemic states, increased intracellular calcium levels activate cytosolic enzymes, resulting in the conversion of xanthine dehydrogenase to xanthine oxidase. [10] Both xanthine dehydrogenase and xanthine oxidase catabolize hypoxanthine and xanthine to uric acid, and xanthine oxidase uses molecular oxygen as an electron acceptor, forming superoxide as a result. [10] Superoxide anion rapidly reacts with itself to form hydrogen peroxide, a potent oxidant capable of injuring the cell by oxidizing lipid membranes and cellular proteins. Hydrogen peroxide then produces a cascade of oxygen free-radicals, including hydroxyl radical and singlet oxygen, that are even more potent than the others. The damaging effects of oxygen free-radicals begin on reperfusion of the organ.

During ischemic conditions, tissue oxygen levels fall below the threshold needed to allow xanthine oxidase to metabolize xanthine and hypoxanthine. This decrease allows the intracellular concentration of these metabolites to rise. On reperfusion, oxygen is suddenly available, and metabolism proceeds rapidly, resulting in a sudden production of reactive oxygen intermediates. The cellular pathways to scavenge oxygen free-radicals are overwhelmed, and cellular injury ensues.

Allopurinol, an inhibitor of xanthine oxidase, has protective effects when it is used before the ischemic insult, as shown in various experimental systems. Lipid peroxidation is another consequence of free radical generation. [11] In this process, interaction of highly reactive oxygen species with polyunsaturated fatty acids in the cell membrane starts a chain reaction that may ultimately destroy cellular integrity and result in cell death. The magnitude of lipid peroxidation appears to be inversely related to levels of glutathione, which functions as an endogenous free-radical scavenger. [11] Therefore, glutathione and other agents that protect against peroxidation are useful in organ preservation solutions to attenuate reperfusion injury.

Production of oxygen free radicals also initiates production of prostaglandins, including leukotriene B4, by means of direct activation of phospholipase A210. This chemoattractant causes leukocyte adherence to vascular endothelium. These neutrophils may contribute to local injury by plugging the microcirculation and by degranulation with resulting proteolytic damage to the organ.

Cytokines are intercellular messenger molecules that may be produced in various normal and pathophysiologic states. Ischemia and reperfusion are associated with marked release of tumor necrosis factor (TNF)-alpha, interferon-gamma, interleukin-1, and interleukin-8. [12] These cytokines cause upregulation of adhesion molecules and cause leukocyte adherence and platelet plugging after revascularization, resulting in graft failure and rejection.

Nitric oxide (NO) is an extremely labile autocoid generated by nitric oxide synthase from L-arginine. Reports indicate that NO production is induced by inflammatory cytokines, such as TNF-alpha, interferon-gamma, and interleukin-1. Increased NO synthesis also correlates with acute rejection. [13]

Various flush solutions are used for organ preservation. Each substantially differs in their composition, but the purposes of each are similar: to prevent cellular edema, to delay cell destruction, and to maximize organ function after perfusion is reestablished. [14, 15]

The development of solutions of intracellular electrolyte composition allowed for organ preservation to be attempted. These early solutions, called Collins solutions, contained high concentrations of potassium, magnesium, phosphate, sulphate, and glucose. Euro-Collins solution was developed as a modification of the original Collins solution and contained high concentrations of potassium (110 mM), phosphate (60 mM), and glucose (180 mM). Organ preservation improved with the use of Euro-Collins solution. When it was used for kidney preservation, delayed renal function after implantation was significantly reduced. The solution was adequate for use in preserving the heart, liver, and lung.

Ross-Marshall citrate solutions were developed as alternatives to the Collins solutions. Their electrolytic compositions are similar except that citrate replaces phosphate, and mannitol replaces glucose. The citrate acts as a buffer and chelates with magnesium to form an impermeable molecule that helps stabilize the extracellular environment. It is not commonly used in clinical practice.

Initially developed as a cardioplegia solution for the use in open heart surgery, Bretschneider histidine tryptophan ketoglutarate (HTK) solution was found to be effective in liver and kidney preservation. Its contents include histidine (200 mM), mannitol (30 mM), tryptophan and alpha-ketoglutaric acid. It also contains low concentrations of sodium, potassium, and magnesium. Histidine serves as a buffer, and tryptophan, histidine, and mannitol act as oxygen free-radical scavengers. The solution improved renal function after transplantation compared with Euro-Collins solution. It has become increasingly popular in recent years, but some concern exists regarding an increased risk for pancreatitis when the pancreas graft is preserved with HTK solution. This has not been confirmed in randomized studies.

This solution contains sucrose 140 mmol/L and sodium hydrogen and dihydrogen phosphate as buffers. In experimental studies, it preserved dog kidneys for 3 days. It is not commonly used today.

University of Wisconsin (UW) solution was developed for liver, kidney, and pancreas preservation. It has been considered the standard for renal and hepatic preservation, effectively extending the ischemic time for kidneys and livers and allowing them to be transported considerable distances to waiting recipients. UW solution has also been successfully applied to small-bowel and heart preservation.

The composition of the solution is complex. Analysis of its various components has shown that some may be omitted or replaced with results similar to that of the original solution.

The solution has an osmolality of 320 mmol/kg and pH 7.4 at room temperature and is composed of the following:

Potassium 135 mmol/L

Sodium 35 mmol/L

Magnesium 5 mmol/L

Lactobionate 100 mmol/L

Phosphate 25 mmol/L

Sulphate 5 mmol/L

Raffinose 30 mmol/L

Adenosine 5 mmol/L

Allopurinol 1 mmol/L

Glutathione 3 mmol/L

Insulin 100 U/L

Dexamethasone 8 mg/L

Hydroxyethyl starch (HES) 50 g/L

Bactrim 0.5 ml/L

HES conveys no advantage to the solution when used for cold storage, and it, in fact, adds to the viscosity of the solution as well as to the expense. HES-free derivatives of the solution have given similar, if not better, clinical results than those of the original formulation.

The lactobionate is the major effective component of the solution. Its insoluble nature maintains the colloid oncotic pressure of the solution, delaying or preventing equilibration of the solution across the cell membrane, and thus delaying the development of cellular edema.

The lowered concentration of potassium improves the flushing efficiency of the solution by removing the vasoconstrictive effect of the high potassium solution.

Glutathione is unstable in solution and effective as an oxygen free-radical scavenger only if it is added immediately before use. Adenosine and allopurinol help in this function.

Celsior is a recently developed extracellular-type, low-viscosity (due to the absence of HES) preservation solution that couples the impermeant, inert osmotic carrier from UW solution (by using lactobionate and mannitol) and the strong buffer from Bretschneider HTK solution (by using histidine). The reduced glutathione in Celsior solution is the best antioxidant available. The solution was specifically designed for heart transplantation. It is being currently used in clinical lung, liver, and kidney transplantations and it is under investigation for pancreas transplantation.

The contents of Celsior solution are as follows:

Sodium 100 mmol/L

Potassium 15 mmol/L

Magnesium 13 mmol/L

Calcium 0.25 mmol/L

Lactobionate 80 mmol/L

Glutathione 3 mmol/L

Glutamate 20 mmol/L

Mannitol 60 mmol/L

Histidine 30 mmol/L

Researchers at Kyoto University developed a new solution that contains a high sodium concentration, a low potassium concentration, trehalose, and gluconate. The solution is chemically stable at room temperature. It is being investigated for skin storage and lung preservation in a rat model. ET Kyoto solution is also being actively investigated in clinical trials for transplantation of the lungs, heart, and other organs.

Its constituents include the following:

Sodium 100 mmol/L

Potassium 44 mmol/L

Phosphate 25 mmol/L

Trehalose 41 mmol/L

HES 30 gm/L

Gluconate 100 mmol/L

Because most transplanted organs are from deceased donors, the organ must inevitably be stored after its removal from the donor until it can be transplanted into a suitable recipient. The donor and recipient are often in different locations, and time is needed to transport the donor organ to the hospital where the recipient is being prepared for transplantation. Effective, safe, and reliable methods are needed to preserve the organ ex vivo until transplantation can be performed. Acceptable preservation times vary with the organ. Most surgeons prefer to transplant the heart within 5 hours of its removal; the kidney can safely be stored for 40-50 hours, but earlier transplantation is preferred. Most pancreas transplants are performed after 5-15 hours of preservation. Liver transplantations usually are performed within 6-12 hours.

Hypothermia is the preferred technique of organ preservation because it is simple, does not require sophisticated expensive equipment, and allows ease of transport. Hypothermia is beneficial because it slows metabolism. [4, 16, 17] Organs exposed to normothermic ischemia remain viable for relatively short periods, usually less than 1 hour.

In warm ischemia, the absence of oxygen leads to a rapid decline in ATP levels in the cells, to a redistribution of electrolytes across the cell membrane, and to a decrease in biosynthetic reactions. However, biodegradable reactions continue; these include the accumulation of lactic acid, a decrease in intracellular pH, proteolysis, lipolysis, and lipid peroxidation.

With hypothermia, the degradative reactions are considerably slowed but not halted. A 10 º C decrease in temperature slows the metabolic rate approximately by a factor of 2. Cooling an organ from 37 º C to approximately 0 º C slows metabolism by a factor of 12-13. Hypothermia alone is not sufficient for adequate preservation because of the time necessary for optimal use of deceased donor organs. Therefore, the organ must also be flushed with an appropriate preservation solution.

Two techniques of hypothermic preservation are used: simple cold storage and continuous hypothermic perfusion. With simple cold storage, the organ is flushed with cold preservative solution and placed in a sterile bag immersed in the solution. The sterile bag is placed inside another bag that contains crushed ice. Advantages of simple cold storage include universal availability and ease of transport. With continuous hypothermic perfusion, which Belzer developed in 1967, a machine is used to continuously pump perfusion fluid through the organ. [18] In this way, oxygen and substrates are continuously delivered to the organ, which maintains ion-pump activity and metabolism, including the synthesis of ATP and other molecules.

For kidneys, machine perfusion offers superior results compared with simple cold storage. [19] With simple cold storage, approximately 25-30% of transplanted kidneys have delayed graft function, but with machine perfusion, the rate can be less than 10%. The perfusate is similar to the UW solution, except for the impermeant. For continuous perfusion, gluconate is used in place of lactobionic acid. [18]

Cryopreservation has long fascinated scientists, who have made many attempts at cryopreserving organs and even full bodies by means of conventional freezing and thawing. [20] These efforts usually focused on simple transferring techniques that have worked for cell preservation to organs.

Notable problems are associated with this approach. For instance, the packing density of cells in an organ can approach 80%, but preservation of isolated cells becomes technically difficult at a cell concentration above 20%. [21] In addition, the presence of many different cell types, each with its own requirements for optimal cryopreservation limits the recovery of each when a single thermal protocol is imposed on all cells. Moreover, extracellular ice can cause mechanical damage to the structural integrity of the organ, particularly the vascular component, where ice is likely to form. [20] Mechanical fractures occur in the vitreous solids that exist between ice crystals when thermal stresses occur at low temperatures. These fractures separate parts of the organ from each other. The attachments that form between cells and between cells and their basement membranes are disrupted. Last, osmotic movement of interstitial water causes mechanical stresses.

Each of the problems is a formidable source of damage, above those already well known from studies of cells in suspension. Cryopreservation of whole organs is not possible using current technology.

Perhaps the most promising approach to the cryopreservation of whole organs lies with the process of vitrification. [21] This is the process of taking an aqueous solution and making it into an amorphous solid.

A liquid can be cooled past its melting point without a phase change. The formation of ice first requires nucleation, a stochastic process by which an ice nucleus (cluster of water molecules that reaches a critical size) forms spontaneously. With lowered temperatures, the critical size of a nucleus decreases and eventually approaches the size of the clusters in the liquid. The solution can be cooled to the homogeneous nucleation temperature (temperature at which the probability of nucleation equals 1) in a supercooled state, but below this point crystallization occurs. The supercooled liquid exists in a metastable state until the transition temperature is reached. At this temperature, the time required for the molecular translations needed in nucleation or crystalline growth becomes infinite; therefore, the amorphous solid is stable below this point.

Vitrification can also be achieved by adding solutes that develop a structure in water that must be broken down for crystalline growth. The solute molecules impede this growth simply by blocking other water molecules and interfering with hydrogen bonding necessary for ice formation. Both the kinetic approach and the solute approach are additive. Therefore, as the solute concentration is increased, the cooling rate necessary to achieve vitrification is lowered.

The problem with vitrifying organs is that about half of the water in an organ must be replaced with solute molecules for vitrification to occur at reasonable cooling rates. The difficulties in developing successful vitrification techniques include infusing high concentrations of vitrification solutes into the organ and removing them on thawing and preventing fracturing of the organs during cryogenic storage and warming the organs fast enough to prevent devitrification, among other problems. Vitrification is not currently being used in clinical transplantation.

Table. Constituents and Their Functions (Open Table in a new window)

Constituent

Function

Example

Osmotic active agents

Prevent cell swelling

Lactobionate, raffinose, citrate, gluconate

Electrolytes

Exert an osmotic effect

Na+, K+, Ca+, Mg+

H+ ion buffers

Regulate extracellular H+

Phosphate, histidine, N -(2-hydroxyethyl)-piperazine-N’-2-ethanesulfonic acid (HEPES) buffer

Colloid

Initial vascular flush out and perfusion

Albumin, HES

Metabolic inhibitors

Suppresses degradation of cell constituents

Allopurinol, antiproteases, chlorpromazine

Metabolites

Facilitate restoration of metabolism on reperfusion

Adenosine, glutathione

Antioxidants

Inhibit oxygen free-radical injury

Amino steroids, vitamin E, deferoxamine (Desferal)

 

Preservation of the organ begins when a donor is identified, and the donor’s hemodynamic status must be adequately maintained to prevent organ injury before its recovery and preservation. An organ can be injured because of cardiovascular instability and hypotension. During the operation to remove the organ, the warm ischemia time must be minimized, and the organ must be cooled rapidly in situ or by means of well-timed back-table flush out. [22] Thereafter, the organ is maintained in hypothermic state and transported in this state until it is ready to be transplanted. Cold ischemia time must be kept within the limits prescribed for the particular organ.

Tissue perfusion

Because most donors are treated initially with a minimum of fluids to prevent increased cerebral edema, one of the first priorities in donor maintenance is the prompt restoration of intravascular volume. Volume resuscitation with 3-10 L may be required, and pressor agents may be needed to support blood pressure. [22]

Crystalloids may be used, and lactated Ringer’s solution is often given because its low sodium concentration counteracts the sodium-increasing effects of diabetes insipidus. If the latter condition has resulted in severe hypernatremia, free water may need to be added, and desmopressin may also be used selectively in severe cases. Colloid and blood should be used to restore and maintain osmotic pressure and normovolemia.

The hematocrit should be kept at approximately 35% by volume to replace traumatic losses and maintain oxygen-carrying capacity. Enough volume should be administered to achieve a urine output of at least 100 mL/h and a systolic arterial pressure of 90-120 mm Hg. Arterial blood pressures higher than this are usually unnecessary because of the loss of sympathetic tone that accompanies brain death.

Oxygenation and ventilation

Arterial blood gases should be checked regularly, and the ventilator should be adjusted to optimize gas exchange and acid-base balance. The oxygen supply should be adequate to maintain an arterial oxygen saturation of greater than 95%, and, if available, a mixed venous oxygen saturation above 70%. Low levels of positive end-expiratory pressure may facilitate balance of the oxygen supply and demand.

Inotropic support

Most donors are hypovolemic at brain death and are receiving inotropic support in lieu of volume to maintain their blood pressure. Dopamine hydrochloride is the most commonly used agent. High doses of dopamine maintained for long periods before organ recovery may be associated with increased rates of acute tubular necrosis and hepatic allograft failure. Cardiac recovery is often abandoned if high doses of inotropic support are required despite adequate volume status.

Other inotropic agents, such as isoproterenol, epinephrine, norepinephrine, and phenylephrine, are occasionally used, but use of these agents should be discouraged because of their peripheral vasoconstrictive effects. Dobutamine is occasionally used in conjunction with low doses of dopamine.

Prevention of hypothermia

Thermoregulatory homeostatic mechanisms are destroyed with brain death, and severe hypothermia may lead to ventricular arrhythmia and cardiac arrest. Warming blankets should be placed above and below the donor to keep the body temperature above 35 º C. If maintenance of normal body temperature is problematic, intravenous fluids may be prewarmed before their administration, and a heated humidifier circuit can be added to the ventilator.

Hypothermia and the composition of the organ-preservation solution are key factors in successful organ preservation. In the cold storage of organs, the organ is rapidly cooled to approximately 4 º C by flushing out the vascular system with an appropriate organ-preservation solution; this is the Starzl method of rapid cooling. The flushing should remove the blood as completely as possible, and the solution be delivered at a pressure that is not damaging to the organ (usually 60-100 cm H2 O) and in a volume that is not excessive. The volume used for each organ varies, but the liver usually is flushed with approximately 2-3 L, the kidney is flushed with 200-500 mL, and the pancreas with 200-500 mL. The organ is then placed in a sterile container and kept cold at 4-6 º C.

After brain death is declared, the deceased is identified as a suitable organ donor, and the next of kin gives permission, the organs must be recovered. Techniques of multiple organ recovery allow for the removal of the heart, lungs, kidneys, liver, intestine, and pancreas from a single donor for transplantation into 6 or more recipients.

The heart-beating donor is brought to the operating room from the intensive care unit or emergency department, with appropriate hemodynamic and electrocardiographic monitoring. Oxygen is delivered by means of manual bag-valve mask with 100% inspired concentration. Inotropic drug infusions are continued during transport and recovery. The anesthesiologist should maintain close communication with the recovery teams to prevent cardiac arrhythmia, hypotension, and hypoxemia.

Steps in the procedure can be categorized as follows: (1) incision, (2) exploration and inspection, (3) mobilization of individual organs, (4) in situ perfusion, (5) removal of organs, and (6) closure of the incision. Postrecovery processing, packaging, and transport to the recipient centers are the final steps.

Incision, exploration, and inspection

The entire torso is prepared with an iodine-containing solution, and a field is draped from the neck to the pubis. General exploration is carried out to confirm that unexpected conditions that preclude donation, such as tumor, infection, or specific organ damage, are absent. A complete midline incision from suprasternal notch to pubis is made for multiple-organ recovery. The sternum is split. If necessary, cruciate abdominal incisions are added to facilitate exposure of the intra-abdominal organs.

Mobilization of individual organs and in situ perfusion

In the rapid technique of organ procurement, little mobilization of individual organs is necessary. Preparation for in situ perfusion consists of a complete Kocher maneuver with a Cantrell maneuver. The aorta is exposed from the bifurcation distally to the level of the left renal vein proximally. The inferior mesenteric artery is divided. Lumbar branches may be ligated and divided at this point. The inferior vena cava is similarly exposed.

Next, the left triangular ligament of the liver is taken down, exposing the crural muscle at the aortic hiatus. The aorta is encircled with tape at the diaphragm. In situ perfusion through the distal aorta and cross-clamping of the proximal aorta begin immediately in the event the donor becomes hemodynamically unstable or sustains cardiac arrest. In situ perfusion prevents warm ischemia. Stability of the donor allows for further preparation before in situ flushing.

The inferior mesenteric vein is isolated as it enters the retroperitoneum behind the pancreas. This vein provides convenient access for in situ portal flushing by means of a small catheter, such as a Javid shunt. The pars flaccida of the lesser omentum should be inspected for evidence of a replaced left hepatic artery arising from the left gastric artery, and minimal dissection of the hepatic artery is necessary.

The course of the ureters should be identified. Gerota’s fascia is widely incised to allow topical cooling with iced slush solution to supplement the in situ perfusion. Complete mobilization of the kidneys before in situ flushing is unnecessary and poses a risk of damage to the renal vessels or inadvertent division of accessory renal arteries.

Removal of organs

A team working simultaneously with the abdominal-retrieval team can prepare the heart and lungs for removal. The superior and inferior vena cava are mobilized, and the aortic arch is dissected sufficiently for the placement of a crossclamp at the time of infusion of aortic root cardioplegia. Preliminary mobilization of the lungs is usually performed, and access to the pulmonary artery is necessary for pulmonary preservation. When all teams are ready, a coordinated sequence of events ensures that all organs are simultaneously cooled and protected.

The donor is given systemic heparin. A Javid shunt is advanced through the inferior mesenteric vein near the pancreas and advanced into the portal vein. A cardioplegia needle is positioned in the aortic arch. The distal abdominal aorta is cannulated for in situ perfusion of the kidneys, liver, and pancreas, and an exsanguination cannula is placed in the distal inferior vena cava. As an alternative, the inferior vena caval-right atrial junction may be divided in the chest with suction catheters placed in the caval lumen and right thoracic cavity to decompress the venous circulation at the moment of aortic cross-clamping.

Another cannula is placed in the distal vena cava for venous decompression and exsanguination. The aortic arch and the abdominal aorta at the diaphragm are simultaneously cross-clamped. (In the case of simultaneous liver/small bowel allograft procurement, the supraceliac aorta is not clamped because of the need to preserve the donor thoracic aorta with the graft without intimal injury from the clamp).

Cardioplegia solution is infused under pressure into the aortic root, perfusing the coronary arteries and arresting the heart. Ventilation is ceased. Portal and distal aortic perfusion are initiated with ice-cold preservation solution. Topical iced slush is placed in the abdomen and chest to assist the cooling process. The heart and lungs are then removed. The clamp is removed from the distal vena caval cannula for exsanguination and to preclude venous congestion.

The liver and pancreas and/or intestine are removed en bloc. The diaphragm surrounding the suprahepatic inferior vena cava and adjacent to the bare area of the liver is divided. The infrahepatic inferior vena cava is divided just cephalad to the left renal vein. The liver, pancreas and intestine unit is now attached by only the distal superior mesenteric vessels coursing to the small bowel and by the aortic origins of the superior mesenteric artery and celiac axis. The liver, pancreas, and intestine are separated as a bench procedure; the celiac axis is retained with the liver.

The process of separation depends, at this point, on the allocation of organs. If the intestine and pancreas have been placed separately, the superior mesenteric arterial and venous branches emerging from the uncinate process are divided, ligating the pancreatic side. If the liver/small bowel graft has been allocated to the same recipient, no further dissection is performed. If only the liver and pancreas have been allocated, the superior mesenteric artery and vein are divided distal to the pancreas (often with a vascular load from a stapling device), and the cylinder of aorta between the superior mesenteric artery and celiac axis is divided.

The splenic artery is divided at its origin. This vessel and the superior mesenteric artery are reconstructed with a bifurcated donor iliac artery graft. The gastroduodenal artery is ligated and divided. The portal vein is divided approximately 1 cm from the superior edge of the pancreas, and the common bile duct is divided just superior to its entrance into the pancreas.

The kidneys are also removed en bloc. The ureters are mobilized with a generous amount of periureteral tissue to avoid devascularization and are divided near their entrance into the bladder. Dissection is carried out posterior to the aorta and vena cava in the plane of the prevertebral fascia. Once removed, the left renal vein is divided with a small cuff of vena cava. The aorta is opened in the midline to identify the orifices of the renal arteries from within the lumen. In this way, multiple renal arteries can be readily identified and kept on a single aortic (Carrel) patch.

Closure of the incision

After the abdominal and thoracic organs are removed, a sampling of lymph nodes and spleen is taken for tissue typing and crossmatch testing. The chest and abdomen are closed, and standard postmortem care is given. If the intestine has been allocated, use of antilymphocyte globulin to avoid graft versus host disease from the lymphoid-rich bowel graft is perfused in the donor. Lymph nodes should be procured prior to initiation of the antilymphocyte globulin because difficulty in collecting adequate viable lymphocytes for the crossmatch has been noted in the past when they are procured after procurement of the solid organs.

Two requirements of any ideal preservation solution are (1) impermeant molecules that suppress hypothermically induced cell swelling and (2) an appropriate biochemical environment. Impermeants are agents that remain outside the cells and that are sufficiently active osmotically to retard the accumulation of water by the cell. Constituents of an ideal solution and their individual function are detailed below and in Preservation Solutions and their Pharmacology above.

Until relatively recently, the primary solution used for cold-storage preservation of the kidneys was Euro-Collins solution. [23] Its formulation provides a hyperosmolar environment with an intracellular electrolyte composition intended to reduce cellular swelling. In combination with hypothermia, kidneys can be safely stored in this solution for up to 36-48 hours before transplantation. [23]

In the 1980s, the advent of new immunosuppressive agents, such as cyclosporine, meant that, for the first time, extrarenal organs could be transplanted with good success rates. With this development, the need for effective preservation became apparent.

The limitations of cold ischemia to approximately 8 hours for the liver and pancreas meant that donor and recipient teams had to be closely coordinated. [24] Complex recipient operations that required a multitude of ancillary support services had to be organized in the middle of the night, and all personnel involved in the procedure, including the surgeons, were starting the operation in a suboptimal fatigued condition.

Researchers at the University of Wisconsin developed a solution that simplified the practice of hepatic and pancreatic transplantation at most centers in North America and Europe. [3] The solution, UW cold-storage solution, is based on lactobionate, raffinose, HES, and a host of other ingredients designed to provide high-energy phosphate precursors, hydrogen-ion buffering capacity, and antioxidant properties. [24]

Lactobionate, an impermeant anion to prevent cellular swelling, was used in place of the glucose contained in Euro-Collins solution. Raffinose, a naturally occurring trisaccharide of fructose, glucose, and galactose, provides additional osmotic activity; and HES is a colloid intended to prevent an increase in the extracellular space, though it makes the solution viscous.

Most teams that perform hepatic and pancreatic transplantation prefer UW solution as the preservation method of choice. [24] Both the liver and pancreas can reliably be stored for 12-18 hours, and isolated clinical cases with total cold ischemia times in excess of 30 hours have been reported. [25] However, evidence is accumulating that cold ischemia times longer than 12 hours may be associated with a high incidence of biliary strictures. [25]

Whether the UW cold-storage solution has any significant advantages over Euro-Collins solution for the preservation of kidneys is unclear. In a large, randomized, multicenter European trial, patient and graft survival rates were similar among recipients of the 2 solutions, but the incidence of delayed graft function requiring dialysis was reduced by approximately one third in the UW group. Results of ongoing trials are needed before a definitive statement can be made about the relative merits of the 2 solutions in renal preservation.

New preservative solutions, including Celsior solution, are emerging and may have advantages over UW solution, [25, 26] though results are conflicting. [27] The Kyoto solution was evaluated for kidney storage and found to be as good as UW solution. Furthermore, the Kyoto solution was less viscous and stable at room temperature for as long as 3 years, and it was cost effective as compared with UW solution. [28]

Another solution that is being increasingly used presently is Bretschneider’s HTK solution (Custodiol). Originally developed for cardioplegia, HTK is routinely used for liver, kidney, and heart transplantation. HTK solution has been shown to be superior to Euro-Collins solution in prospective trials (Ringe, 2006; Agarwal, 2006; Nardo, 2005; Mangus, 2006). Advantages include lower viscosity and less leucocyte adhesion. In the European multicenter trial, HTK was shown to be equivalent to UW solution except for superior delayed graft function rates in the HTK group. Other reports have shown better delayed graft function rates with UW solution (Agarwal, 2005).

A randomized study comparing the efficacy of UW solution versus HTK on 102 liver transplant recipients reported that both solutions were equally effective in graft preservation. [29] Mangus et al reported from their single center study of extended criteria liver donors that HTK and UW were clinically indistinguishable but that biliary complications were less common with HTK. [30] However, in a retrospective single center study of living donor liver transplantation from Korea, the incidence of preservation injury was greater in grafts treated with HTK versus UW solution. [31]

Islet transplantation has become a feasible treatment option for patients with type 1 diabetes mellitus after improvements were made in the diabetogenicity of immunosuppression and in the preparation of sufficient quantities of highly viable islets for transplantation. However, a minimum of 10,000 islet equivalents per kilogram of the recipient’s body weight islet mass is required to achieve insulin independence, [32] and long-term outcomes have been disappointing, with a 5-year insulin-independence rate of 8%.

UW solution has proven to be effective in pancreas preservation, leading to clinically successful whole-pancreas transplantation. In addition, human pancreatic grafts can be preserved for longer than 24 hours by using UW solution. However, in clinical islet transplantation, prolonged cold storage in UW solution before islet isolation significantly reduced recovery of viable islets. [33]

A 2-layer cold-storage method using perfluorochemical (PFC) and UW solution has been evaluated for whole-pancreas preservation. This method continuously supplies sufficient oxygen to a pancreas during preservation and reduces cold ischemic injury by producing ATP, which maintains cellular integrity and controls ischemic cell swelling. [33] Canine pancreata subjected to 90 minutes of warm ischemia were resuscitated during preservation by using the 2-layer method at 4°C for 24-48 hours. [34] A prospective randomized study comparing HTK versus UW in 68 pancreas transplant recipients reported that the solutions were equally suitable for perfusion and organ preservation. In this study, 6-month patient survival was 96.3% (HTK) versus 100% (UW) (P = 0.397). [35]

Cardiac preservation has changed relatively little in recent years. Hyperkalemic, crystalloid cardioplegia solution is used at 4°C, and 4 hours is the generally accepted limit of cold ischemia. [36] For this reason, donor and recipient operations must be finely coordinated. Every effort is made to limit the ischemic time (the time between the initial interruption of coronary flow by means of aortic cross-clamping in the donor and the removal of the clamp in the recipient) to less than 4 hours. Although laboratory data and isolated clinical reports suggest that good results may be expected with storage times of 8 hours or longer with the use of the newer preservation solutions, [36] increased ischemic time remains a strong and important independent risk factor for poor recipient outcome.

The maximal safe interval for the lung to remain ischemic, even when cooled, has not been defined. Based on empiric observation, 6 hours is the selected limit. [37] This constraint limits the distance that can be traveled to recover donor lungs. The limits of donor-lung ischemia have been expanded because of efforts to develop bilateral, sequential lung replacement. The second lung to be implanted is ischemic for longer than the first because the lungs are not implanted simultaneously. The longest cold ischemic time was 9-10 hours, and the lung functioned well within 24 hours after implantation. Although donor-lung dysfunction occurs in 5-10% of cases, it is usually reversible. This problem is not correlated with prolonged donor-lung ischemic time.

Whether one type of preservation solution for lung allografts is better than another remains to be determined. The Celsior solution may be better for early lung function than the standard Euro-Collins solution. [38] One clinical study demonstrated less reperfusion injury, better immediate and intermediate function, and better early and long-term survival for donor lungs preserved with Celsior than with Euro-Collins solution. [37] Core cooling of the donor with an extracorporeal circuit has been used extensively in the United Kingdom for cardiopulmonary transplantation. Others have used an immersion technique without flushing the pulmonary artery. Hypothermia is applied, along with intracellular-type solutions. The Kyoto solution also appears promising in lung transplantation. [39] The optimal preservation solution for the lungs remains unknown, and deficiencies in the quality and duration of preservation still limit the results of pulmonary transplantation.

The transplantation of segments of small bowel with or without concomitant liver transplantation is being performed with increased regularity as the treatment of choice for short-gut syndrome. The bowel is usually preserved with UW solution, though experimental evidence does not indicate that this solution offers any advantage over simple hypothermia. [40] Experimental studies have also reported that ex vivo application of carbon monoxide in UW solution may also prevent reperfusion injury. [41] The use of anti-oxidative agents has also shown promise in laboratory studies as an intervention to minimize preservation injury. [42] The same investigators reported that this may occur due to down-regulation of pre-apoptotic and up-regulation of cytoprotective signals in the presence of a nutrient-rich preservation solution. [43] Laboratory studies on Wistar rates have also reported better small bowel integrity and function compared to UW solution. [44]

Most procurements of small bowel are from donors who have many useful organs. Therefore, standard intra-aortic preservation techniques are used. The current limit of cold ischemia time for small bowel is approximately 12 hours. [45] Reports suggest that the use of luminal flush solutions, both UW and amino acid – enriched solutions, improve mucosal barrier function, as measured by means of mannitol permeability, and decrease villous morphologic injury. [46]

UNOS. United Network for Organ Sharing Web page. United Network for Organ Sharing. Available at http://www.unos.org. Accessed: May 17, 2007.

McBride MA, Harper AM, Taranto SE. The OPTN waiting list, 1988-2002. Clin Transpl. 2003. 53-64. [Medline].

Gjertson DW. Look-up survival tables for living-donor renal transplants: OPTN/UNOS data 1995-2002. Clin Transpl. 2003. 337-86. [Medline].

Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988 Apr. 45(4):673-6. [Medline].

Simonson MS, Dunn MJ. Endothelins: a family of regulatory peptides. State-of-the-art lecture. Hypertension. 1991 Jun. 17(6 Pt 2):856-63. [Medline].

Wilhelm SM, Simonson MS, Robinson AV, Stowe NT, Schulak JA. Cold ischemia induces endothelin gene upregulation in the preserved kidney. J Surg Res. 1999 Jul. 85(1):101-8. [Medline].

Southard JH, Senzig KA, Belzer FO. Effects of hypothermia on canine kidney mitochondria. Cryobiology. 1980 Apr. 17(2):148-53. [Medline].

Belzer FO. Evaluation of preservation of the intra-abdominal organs. Transplant Proc. 1993 Aug. 25(4):2527-30. [Medline].

Jochmans I, Moers C, Smits JM, et al. The Prognostic Value of Renal Resistance During Hypothermic Machine Perfusion of Deceased Donor Kidneys. Am J Transplant. 2011 Aug 11. [Medline].

Koyama I, Bulkley GB, Williams GM, Im MJ. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation. 1985 Dec. 40(6):590-5. [Medline].

Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation. 1992 May. 53(5):957-78. [Medline].

Colletti LM, Burtch GD, Remick DG, Kunkel SL, Strieter RM, Guice KS. The production of tumor necrosis factor alpha and the development of a pulmonary capillary injury following hepatic ischemia/reperfusion. Transplantation. 1990 Feb. 49(2):268-72. [Medline].

Strüber M, Harringer W, Ernst M, Morschheuser T, Hein M, Bund M. Inhaled nitric oxide as a prophylactic treatment against reperfusion injury of the lung. Thorac Cardiovasc Surg. 1999 Jun. 47(3):179-82. [Medline].

Ali F, Dua A, Cronin DC. Changing paradigms in organ preservation and resuscitation. Curr Opin Organ Transplant. 2015 Apr. 20 (2):152-8. [Medline].

Mundt HM, Yard BA, Krämer BK, Benck U, Schnülle P. Optimized donor management and organ preservation before kidney transplantation. Transpl Int. 2015 Nov 13. [Medline].

Warnecke G, Moradiellos J, Tudorache I, Kühn C, Avsar M, Wiegmann B, et al. Normothermic perfusion of donor lungs for preservation and assessment with the Organ Care System Lung before bilateral transplantation: a pilot study of 12 patients. Lancet. 2012 Nov 24. 380(9856):1851-8. [Medline].

Izamis ML, Tolboom H, Uygun B, Berthiaume F, Yarmush ML, Uygun K. Resuscitation of ischemic donor livers with normothermic machine perfusion: a metabolic flux analysis of treatment in rats. PLoS One. 2013. 8(7):e69758. [Medline]. [Full Text].

McAnulty JF, Vreugdenhil PK, Southard JH, Belzer FO. Use of UW cold storage solution for machine perfusion of kidneys. Transplant Proc. 1990 Apr. 22(2):458-9. [Medline].

Deng R, Gu G, Wang D, Tai Q, Wu L, Ju W, et al. Machine perfusion versus cold storage of kidneys derived from donation after cardiac death: a meta-analysis. PLoS One. 2013. 8(3):e56368. [Medline]. [Full Text].

Karlsson JO. Cryopreservation: freezing and vitrification. Science. 2002 Apr 26. 296(5568):655-6. [Medline].

Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology. 2004 Apr. 48(2):157-78. [Medline].

Odom NJ. Organ donation. I–Management of the multiorgan donor. BMJ. 1990 Jun 16. 300(6739):1571-3.

Groenewoud AF, Thorogood J. A preliminary report of the HTK randomized multicenter study comparing kidney graft preservation with HTK and EuroCollins solutions. HTK Study Group. Transpl Int. 1992. 5 Suppl 1:S429-32. [Medline].

Faenza A, Catena F, Nardo B, Montalti R, Capocasale E, Busi N. Kidney preservation with university of Wisconsin and Celsior solution: a prospective multicenter randomized study. Transplantation. 2001 Oct 15. 72(7):1274-7. [Medline].

Cavallari A, Cillo U, Nardo B, Filipponi F, Gringeri E, Montalti R. A multicenter pilot prospective study comparing Celsior and University of Wisconsin preserving solutions for use in liver transplantation. Liver Transpl. 2003 Aug. 9(8):814-21. [Medline].

Boggi U, Vistoli F, Del Chiaro M, Signori S, Croce C, Pietrabissa A. Pancreas preservation with University of Wisconsin and Celsior solutions: a single-center, prospective, randomized pilot study. Transplantation. 2004 Apr 27. 77(8):1186-90. [Medline].

Pedotti P, Cardillo M, Rigotti P, Gerunda G, Merenda R, Cillo U. A comparative prospective study of two available solutions for kidney and liver preservation. Transplantation. 2004 May 27. 77(10):1540-5. [Medline].

Yoshida H, Okuno H, Kamoto T, Habuchi T, Toda Y, Hasegawa S. Comparison of the effectiveness of ET-Kyoto with Euro-Collins and University of Wisconsin solutions in cold renal storage. Transplantation. 2002 Nov 15. 74(9):1231-6. [Medline].

Meine MH, Zanotelli ML, Neumann J, Kiss G, de Jesus Grezzana T, Leipnitz I, et al. Randomized clinical assay for hepatic grafts preservation with University of Wisconsin or histidine-tryptophan-ketoglutarate solutions in liver transplantation. Transplant Proc. 2006 Jul-Aug. 38(6):1872-5. [Medline].

Mangus RS, Fridell JA, Vianna RM, Milgrom MA, Chestovich P, Chihara RK, et al. Comparison of histidine-tryptophan-ketoglutarate solution and University of Wisconsin solution in extended criteria liver donors. Liver Transpl. 2008 Mar. 14(3):365-73. [Medline].

Ko JS, Kim GS, Gwak MS, Yang M, Kim HK, Shin BS. Greater hemodynamic instability with histidine-tryptophan-ketoglutarate solution than University of Wisconsin solution during the reperfusion period in living donor liver transplantation. Transplant Proc. 2008 Dec. 40(10):3308-10. [Medline].

Shapiro AM, Ryan EA, Lakey JR. Diabetes. Islet cell transplantation. Lancet. 2001 Dec. 358 Suppl:S21. [Medline].

Lakey JR, Warnock GL, Rajotte RV, Suarez-Alamazor ME, Ao Z, Shapiro AM. Variables in organ donors that affect the recovery of human islets of Langerhans. Transplantation. 1996 Apr 15. 61(7):1047-53. [Medline].

Tsujimura T, Kuroda Y, Kin T, Avila JG, Rajotte RV, Korbutt GS. Human islet transplantation from pancreases with prolonged cold ischemia using additional preservation by the two-layer (UW solution/perfluorochemical) cold-storage method. Transplantation. 2002 Dec 27. 74(12):1687-91. [Medline].

Schneeberger S, Biebl M, Steurer W, Hesse UJ, Troisi R, Langrehr JM. A prospective randomized multicenter trial comparing histidine-tryptophane-ketoglutarate versus University of Wisconsin perfusion solution in clinical pancreas transplantation. Transpl Int. 2009 Feb. 22(2):217-24. [Medline].

Michel P, Vial R, Rodriguez C, Ferrera R. A comparative study of the most widely used solutions for cardiac graft preservation during hypothermia. J Heart Lung Transplant. 2002 Sep. 21(9):1030-9. [Medline].

Bando T, Kosaka S, Liu C, Hirai T, Hirata T, Yokomise H. Effects of newly developed solutions containing trehalose on twenty-hour canine lung preservation. J Thorac Cardiovasc Surg. 1994 Jul. 108(1):92-8. [Medline].

Sommer SP, Warnecke G, Hohlfeld JM, Gohrbandt B, Niedermeyer J, Kofidis T. Pulmonary preservation with LPD and celsior solution in porcine lung transplantation after 24 h of cold ischemia. Eur J Cardiothorac Surg. 2004 Jul. 26(1):151-7. [Medline].

Chen F, Fukuse T, Hasegawa S, Bando T, Hanaoka N, Kawashima M. Effective application of ET-Kyoto solution for clinical lung transplantation. Transplant Proc. 2004 Nov. 36(9):2812-5. [Medline].

Kokudo Y, Furuya T, Takeyoshi I, Nakamura K, Zhang S, Murase N. Comparison of University of Wisconsin, Euro-Collins, and lactated Ringer’s solutions in rat small bowel preservation for orthotopic small bowel transplantation. Transplant Proc. 1994 Jun. 26(3):1492-3. [Medline].

Nakao A, Toyokawa H, Tsung A, Nalesnik MA, Stolz DB, Kohmoto J. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant. 2006 Oct. 6(10):2243-55. [Medline].

Salehi P, Walker J, Madsen K, Churchill TA. Control of oxidative stress in small bowel: relevance to organ preservation. Surgery. 2006 Mar. 139(3):317-23. [Medline].

Salehi P, Walker J, Madsen KL, Sigurdson GT, Strand BL, Christensen BE, et al. Relationship between energetic stress and pro-apoptotic/cytoprotective kinase mechanisms in intestinal preservation. Surgery. 2007 Jun. 141(6):795-803. [Medline].

Wei L, Hata K, Doorschodt BM, Büttner R, Minor T, Tolba RH. Experimental small bowel preservation using Polysol: a new alternative to University of Wisconsin solution, Celsior and histidine-tryptophan-ketoglutarate solution?. World J Gastroenterol. 2007 Jul 21. 13(27):3684-91. [Medline].

Furukawa H, Casavilla A, Abu-Elmagd K, Reyes J, Nour B, Kadry Z. Basic considerations for the procurement of intestinal grafts. Transplant Proc. 1994 Jun. 26(3):1470. [Medline].

Olson DW, Jijon H, Madsen KL, Al-Saghier M, Zeng J, Jewell LD. Human small bowel storage: the role for luminal preservation solutions. Transplantation. 2003 Aug 27. 76(4):709-14. [Medline].

Ad Hoc Committee of the Harvard Medical School. A definition of irreversible coma. Report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA. 1968 Aug 5. 205(6):337-40. [Medline].

Anadol AZ, Dursun A, Dalgiç A, Memis L, Sert S. Positive effect of low molecular weight dextrans on the early graft function. Int Urol Nephrol. 2001. 33(4):677-83. [Medline].

Arreola JL, Segura P, Vanda B, Vargas MH. Evaluation of the vascular permeability after 12-hour preservation of rabbit lungs in HTK solution. Transplant Proc. 2002 Jun. 34(4):1105-7. [Medline].

Baicu SC, Taylor MJ. Acid-base buffering in organ preservation solutions as a function of temperature: new parameters for comparing buffer capacity and efficiency. Cryobiology. 2002 Aug. 45(1):33-48. [Medline].

Baron O, Fabre S, Haloun A, Treilhaud M, al Habasch O, Duveau D. Retrospective clinical comparison of Celsior solution to modified blood Wallwork solution in lung transplantation for cystic fibrosis. Prog Transplant. 2002 Sep. 12(3):176-80. [Medline].

Brasile L, Stubenitsky BM, Booster MH, Arenada D, Haisch C, Kootstra G. Hypothermia–a limiting factor in using warm ischemically damaged kidneys. Am J Transplant. 2001 Nov. 1(4):316-20. [Medline].

Casanova D, Correas M, Moran JL, Salas E, Amado JA, Garcia Unzueta MT. Nitric oxide in cold and warm ischemia reperfusion renal transplantation. Transplant Proc. 2002 Feb. 34(1):45-6. [Medline].

Cascales P, Fernandez V, Tomas A, Sanchez del Campo F, Gonzalez F, Tascon E. Comparison of UW and Celsior solutions in experimental liver preservation by assessment of alpha-glutathione sulfotransferase. Transplant Proc. 2002 Feb. 34(1):53. [Medline].

de Perrot M, Keshavjee S. Lung preservation. Ann Thorac Surg. 2002 Aug. 74(2):629-31. [Medline].

Delgado DH, Rao V, Ross HJ. Donor management in cardiac transplantation. Can J Cardiol. 2002 Nov. 18(11):1217-23. [Medline].

Demertzis S, Wahlers T, Schäfers HJ, Wippermann J, Jurmann M, Cremer J. Myocardial preservation with the UW solution. First European results in clinical heart transplantation. Transpl Int. 1992. 5 Suppl 1:S343-4. [Medline].

Desrois M, Caus T, Lan C, Sciaky M, Cozzone PJ, Bernard M. Comparative effects of Celsior and a new cardioplegic solution on function, energy metabolism, and intracellular pH during long-term heart preservation. Transplant Proc. 2002 Jun. 34(4):1259-61. [Medline].

Fabre E, Conti M, Paradis V, Droupy S, Bedossa P, Legrand A. Impact of different combined preservation modalities on warm ischemic kidneys: effect on oxidative stress, hydrostatic perfusion characteristics and tissue damage. Urol Res. 2002 May. 30(2):89-96. [Medline].

García-Rinaldi R. Kidney transplantation from donors without a heartbeat. N Engl J Med. 2002 Nov 28. 347(22):1799-801; author reply 1799-801. [Medline].

Jayle C, Hauet T, Menet E, et al. Beneficial effects of polyethylene glycol combined with low-potassium solution against lung ischemia/reperfusion injury in an isolated, perfused, functional pig lung. Transplant Proc. 2002 May. 34(3):834-5. [Medline].

Jovine E, Di Benedetto F, Quintini C, Masetti M, Cautero N, Gelmini R. Procurement technique for isolated small bowel, pancreas, and liver from multiorgan cadaveric donor. Transplant Proc. 2002 May. 34(3):904-5. [Medline].

Kaneda T, Zhang ZW, Ogawa T, Otaki M, Saga T. Pretreatment of donors with endothelin receptor antagonist TAK-044 improves cardiac functional recovery following preservation with University of Wisconsin solution. Scand Cardiovasc J. 2002 Mar. 36(2):105-7. [Medline].

Lama C, Rafecas A, Figueras J, Torras J, Ramos E, Fabregat J. Comparative study of Celsior and Belzer solutions for hepatic graft preservation: preliminary results. Transplant Proc. 2002 Feb. 34(1):54-5. [Medline].

Lee CY, Zhang JX, Jones JW Jr, Southard JH, Clemens MG. Functional recovery of preserved livers following warm ischemia: improvement by machine perfusion preservation. Transplantation. 2002 Oct 15. 74(7):944-51. [Medline].

Masters TN, Fokin AA, Schaper J, Pool L, Gong G, Robicsek F. Changes in the preserved heart that limit the length of preservation. J Heart Lung Transplant. 2002 May. 21(5):590-9. [Medline].

Matsumoto S, Kuroda Y. Perfluorocarbon for organ preservation before transplantation. Transplantation. 2002 Dec 27. 74(12):1804-9. [Medline].

Matsumoto S, Qualley SA, Goel S, Hagman DK, Sweet IR, Poitout V. Effect of the two-layer (University of Wisconsin solution-perfluorochemical plus O2) method of pancreas preservation on human islet isolation, as assessed by the Edmonton Isolation Protocol. Transplantation. 2002 Nov 27. 74(10):1414-9. [Medline].

McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17. 312(3):159-63. [Medline].

Meneu Diaz JC, Vicente E, Nuño J, Quijano Y, Lopez-Hervás P, Bárcena R. Prospective comparative study of the efficacy of Celsior solution for preservation in clinical liver transplant. Transplant Proc. 2002 Feb. 34(1):49. [Medline].

Meng H, Gao L, Shen H, Chen G, Cai RJ, Mu F. Morphological changes in canine lungs perfused with modified Euro-Collins solution. Di Yi Jun Yi Da Xue Xue Bao. 2002 Oct. 22(10):898-901. [Medline].

Michel P, Ferrera R. Importance of calcium during hypothermic myocardial preservation with standard and modified UW solutions. Transplant Proc. 2002 Jun. 34(4):1118-20. [Medline].

Minor T, Olschewski P, Tolba RH, Akbar S, Kocálková M, Dombrowski F. Liver preservation with HTK: salutary effect of hypothermic aerobiosis by either gaseous oxygen or machine perfusion. Clin Transplant. 2002 Jun. 16(3):206-11. [Medline].

Mueller AR, Pascher A, Schulz RJ, Rayes N, Platz KP, Schirmeier A. Clinical small bowel transplantation: focus on mucosal barrier function. Transplant Proc. 2002 May. 34(3):926-8. [Medline].

Nydegger UE, Carrel T, Laumonier T, Mohacsi P. New concepts in organ preservation. Transpl Immunol. 2002 May. 9(2-4):215-25. [Medline].

Remadi JP, Baron O, Roussel JC, Al Habash O, Treilhaud M, Despins P. Myocardial preservation using Celsior solution in cardiac transplantation: early results and 5-year follow-up of a multicenter prospective study of 70 cardiac transplantations. Ann Thorac Surg. 2002 May. 73(5):1495-9. [Medline].

Rodríguez González F, Jiménez Romero C, Rodríguez Romano D, Loinaz Segurola C, Marqués Medina E, Pérez Saborido B. Orthotopic liver transplantation with 100 hepatic allografts from donors over 60 years old. Transplant Proc. 2002 Feb. 34(1):233-4. [Medline].

Rull R, García-Valdecasas JC, Momblan D, Grande L, Vidal O, Fuster J. Evaluation of potential liver donors: expanding donor criteria?. Transplant Proc. 2002 Feb. 34(1):229-30. [Medline].

Schnitzler MA, Woodward RS, Brennan DC, Whiting JF, Tesi RJ, Lowell JA. The economic impact of preservation time in cadaveric liver transplantation. Am J Transplant. 2001 Nov. 1(4):360-5. [Medline].

Silva LA, Bertels IM, Paula FS, Falkenstein D, Figueiredo JF. The effect of Collin’s, Euro-Collin’s, and University of Wisconsin solutions on the function of isolated proximal straight tubules. Transplant Proc. 2002 Jun. 34(4):1108-10. [Medline].

Sollinger HW. Organ preservation. Schwartz SI, ed. Principles of Surgery. 7th ed. New York, NY: McGraw-Hill Professional; 1999.

Sonnino RE, Cross RS, Tawfik OW. Mediators of ischemia in preserved intestinal grafts. Transplant Proc. 2002 May. 34(3):975-6. [Medline].

St Peter SD, Imber CJ, Lopez I, Hughes D, Friend PJ. Extended preservation of non-heart-beating donor livers with normothermic machine perfusion. Br J Surg. 2002 May. 89(5):609-16. [Medline].

Stoica SC, Satchithananda DK, Charman S, Sharples L, King R, Rozario C. Swan-Ganz catheter assessment of donor hearts: outcome of organs with borderline hemodynamics. J Heart Lung Transplant. 2002 Jun. 21(6):615-22. [Medline].

Troisi R, Meester D, Regaert B, van den Broecke C, Cuvelier C, Hesse UJ. Tolerance of the porcine pancreas to warm and cold ischemia: comparison between University of Wisconsin and histidine-tryptophan-ketoglutarate solution. Transplant Proc. 2002 May. 34(3):820-2. [Medline].

Van As AB, Lotz Z, Tyler M, Adams S, Ryffel B, Kahn D. Histological assessment after different methods of reperfusion following liver transplantation. S Afr J Surg. 2002 Aug. 40(3):95-8. [Medline].

Warnecke G, Strüber M, Hohlfeld JM, Niedermeyer J, Sommer SP, Haverich A. Pulmonary preservation with Bretscheider’s HTK and Celsior solution in minipigs. Eur J Cardiothorac Surg. 2002 Jun. 21(6):1073-9. [Medline].

Constituent

Function

Example

Osmotic active agents

Prevent cell swelling

Lactobionate, raffinose, citrate, gluconate

Electrolytes

Exert an osmotic effect

Na+, K+, Ca+, Mg+

H+ ion buffers

Regulate extracellular H+

Phosphate, histidine, N -(2-hydroxyethyl)-piperazine-N’-2-ethanesulfonic acid (HEPES) buffer

Colloid

Initial vascular flush out and perfusion

Albumin, HES

Metabolic inhibitors

Suppresses degradation of cell constituents

Allopurinol, antiproteases, chlorpromazine

Metabolites

Facilitate restoration of metabolism on reperfusion

Adenosine, glutathione

Antioxidants

Inhibit oxygen free-radical injury

Amino steroids, vitamin E, deferoxamine (Desferal)

Erik B Finger, MD, PhD Assistant Professor, Department of Surgery, Division of Transplantation, University of Minnesota School of Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Debra L Sudan, MD Professor of Surgery, Chief, Abdominal Transplant Surgery, Vice Chair of Clinical Operations, Department of Surgery, Duke University School of Medicine

Debra L Sudan, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Surgeons, American Society of Transplant Surgeons, American Society of Transplantation, American Surgical Association, Association for Academic Surgery, Nebraska Medical Association, Society for Surgery of the Alimentary Tract, Society of University Surgeons, Association of Women Surgeons, Association of Women Surgeons, International Liver Transplantation Society

Disclosure: Nothing to disclose.

Ron Shapiro, MD Professor of Surgery, Robert J Corry Chair in Transplantation Surgery, Associate Clinical Director, Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center

Ron Shapiro, MD is a member of the following medical societies: American Society of Transplantation, American Surgical Association, American College of Surgeons, Transplantation Society, International Pediatric Transplant Association, American Society of Transplant Surgeons, Association for Academic Surgery, Central Surgical Association, Society of University Surgeons

Disclosure: Nothing to disclose.

Juan D Arenas, MD Chair, Division of Surgical Transplantation, Univeristy of Texas Southwestern Medical Center

Disclosure: Nothing to disclose.

Sanjeev Kaul, MD, MCh (Urol) Clinical Fellow in Laparoscopic Urology and Robotics, Department of Urology, Henry Ford Hospital

Disclosure: Nothing to disclose.

Sandeep Mukherjee, MB, BCh, MPH, FRCPC Associate Professor, Department of Internal Medicine, Section of Gastroenterology and Hepatology, University of Nebraska Medical Center; Consulting Staff, Section of Gastroenterology and Hepatology, Veteran Affairs Medical Center

Sandeep Mukherjee, MB, BCh, MPH, FRCPC is a member of the following medical societies: Royal College of Physicians and Surgeons of Canada

Disclosure: Merck Honoraria Speaking and teaching; Ikaria Pharmaceuticals Honoraria Board membership

Organ Preservation

Research & References of Organ Preservation|A&C Accounting And Tax Services
Source

From Admin and Read More here. A note for you if you pursue CPA licence, KEEP PRACTICE with the MANY WONDER HELPS I showed you. Make sure to check your works after solving simulations. If a Cashflow statement or your consolidation statement is balanced, you know you pass right after sitting for the exams. I hope my information are great and helpful. Implement them. They worked for me. Hey.... turn gray hair to black also guys. Do not forget HEALTH? Competence Improvement might be the number 1 necessary and significant point of reaching authentic being successful in all of professions as most people experienced in much of our modern culture together with in Across the world. Thus fortunate to focus on together with everyone in the soon after about exactly what thriving Proficiency Improvement is;. just how or what methods we function to get wishes and gradually one definitely will work with what whomever is in love with to can every single time of day to get a extensive lifespan. Is it so amazing if you are in a position to grow competently and acquire achievements in just what you dreamed, steered for, encouraged and been effective really hard each and every daytime and undoubtedly you turn into a CPA, Attorney, an operator of a large manufacturer or possibly even a medical professionsal who may tremendously make contributions excellent benefit and valuations to other individuals, who many, any contemporary culture and town clearly shown admiration for and respected. I can's imagine I can help others to be leading high quality level exactly who will make contributions major products and elimination values to society and communities at present. How joyful are you if you grow to be one just like so with your individual name on the label? I get arrived on the scene at SUCCESS and prevail over many the complicated segments which is passing the CPA qualifications to be CPA. Also, we will also handle what are the problems, or various situations that might be on the means and just how I have personally experienced all of them and will probably reveal you learn how to get over them.

Send your purchase information or ask a question here!

10 + 4 =

0 Comments

Submit a Comment

Business Best Sellers

 

Get Paid To Use Facebook, Twitter and YouTube
Online Social Media Jobs Pay $25 - $50/Hour.
No Experience Required. Work At Home, $316/day!
View 1000s of companies hiring writers now!
Order Now!

 

MOST POPULAR

*****

Customer Support Chat Job: $25/hr
Chat On Twitter Job - $25/hr
Get Paid to chat with customers on
a business’s Twitter account.
Try Free Now!

 

Get Paid To Review Apps On Phone
Want to get paid $810 per week online?
Get Paid To Review Perfect Apps Weekly.
Order Now!

Look For REAL Online Job?
Get Paid To Write Articles $200/day
View 1000s of companies hiring writers now!
Try-Out Free Now!

 

 

Organ Preservation

error: Content is protected !!